【題目】某花店每天以每枝元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝,)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)枝玫瑰花,表示當(dāng)天的利潤(單位:元),求的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù) ,有,在 上, ,若 ,則實數(shù)m的取值范圍為( )
A.B.
C.[-3,3]D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:對任意實數(shù),都有;
(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有很多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一,給出下列四個結(jié)論,其中正確的選項是( )
A.曲線C關(guān)于坐標(biāo)原點(diǎn)對稱
B.曲線C恰好經(jīng)過6個整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
C.曲線C上任意一點(diǎn)到原點(diǎn)的距離最小值為1
D.曲線C所圍成的區(qū)域的面積小于4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個點(diǎn)涂色,要求每個點(diǎn)涂一種顏色,且圖中每條線段的兩個端點(diǎn)涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個相異零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出.現(xiàn)有拋物線,如圖一平行于軸的光線射向拋物線,經(jīng)兩次反射后沿平行軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2.
(1)求證:AC⊥BE;
(2)若點(diǎn)F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com