【題目】已知函數(shù),其中為常數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若的一條切線,求的值;

(3)已知為整數(shù),若對任意,都有恒成立,求的最大值.

【答案】(1)答案見解析;(2)0;(3)2.

【解析】分析:(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)設(shè)切點(diǎn)為則:,從而可得結(jié)果;(3)恒成立等價于恒成立,構(gòu)造函數(shù),通過導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后可得結(jié)果.

詳解:(1)函數(shù)的定義域?yàn)?/span>

時,則,所以上單調(diào)遞增;

時,則當(dāng)時,,當(dāng)時,

所以上遞減,在上遞增

(2)設(shè)切點(diǎn)為則:,解得

(3)當(dāng)時,對任意,都有恒成立等價于恒成立

,則,

由(1)知,當(dāng)時,上遞增

因?yàn)?/span>,所以上存在唯一零點(diǎn),

所以上也存在唯一零點(diǎn),設(shè)此零點(diǎn)為,則

因?yàn)楫?dāng)時,,當(dāng)時,

所以上的最小值為,所以,

又因?yàn)?/span>,所以,所以

又因?yàn)?/span>為整數(shù)且,所以的最大值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C:y2=2px的焦點(diǎn)為F,拋物線上一定點(diǎn)Q(1,2).

(1)求拋物線C的方程及準(zhǔn)線l的方程;
(2)過焦點(diǎn)F的直線(不經(jīng)過Q點(diǎn))與拋物線交于A,B兩點(diǎn),與準(zhǔn)線l交于點(diǎn)M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價格定為元/件.

(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費(fèi)萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費(fèi))

(2)當(dāng)推廣促銷費(fèi)投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國擁有世界上最大的快遞市場.某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(不足,按計(jì)算)需再收5.

該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

公司對近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;

(2)①估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費(fèi)用.目前前臺有工作人員3人,每人每天攬件不超過150件,日工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.

查看答案和解析>>

同步練習(xí)冊答案