已知命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線;命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,若p與q中有且僅有一個為真命題,求k的取值范圍.
分析:由命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線,知(k-4)(k-6)<0;由命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,知M在橢圓內(nèi).再由p與q中有且僅有一個為真命題,知p真q假,或p假q真.分別
討論,能求出k的取值范圍.
解答:解:∵命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線,
∴(k-4)(k-6)<0,解得4<k<6
∵命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,
∴M在橢圓內(nèi),即
22
5
+
12
k
<1,且k>0,解得k>5
∵p與q中有且僅有一個為真命題,
∴p真q假,或p假q真
當p真q假時,
4<k<6
k≤5
,解得4<k≤5;
當p假q真時,
k≤4或k≥6
k>5
,解得k≥6.
綜上取并集,得k的取值范圍{k|4<k≤5或k≥6}.
點評:本題考查參數(shù)的取值范圍的求法,解題時要涉及到雙曲線、橢圓、命題等基本知識點,要注意等價轉(zhuǎn)化思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負實根;q:方程mx2+(m-1)x+m=0無實根.若“p或q”為真,p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2+mx+1=0有兩個不相等的負實數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域為實數(shù)集R,若P或Q為真,P且Q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:“方程x2+
y2m
=1表示焦點在y軸上的橢圓”;命題Q:“方程2x2-4x+m=0沒有實數(shù)根”.若P∧Q假,P∨Q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2-2mx+m=0沒有實數(shù)根;
命題Q:?x∈R,x2+mx+1≥0.
(1)寫出命題Q的否定“¬Q”;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案