【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(hào)(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.

(參考公式:

【答案】(1) ;(2) 預(yù)測(cè)年該企業(yè)的收入為千萬元.

【解析】試題分析:(1)由平均數(shù)公式計(jì)算平均值,結(jié)合公式計(jì)算回歸方程即可即可;

(2)利用(1)中求得的結(jié)論即可預(yù)測(cè)2020年該企業(yè)的收入.

試題解析:

I)由已知數(shù)據(jù)得: ,

,

,

,

, .

故所求回歸方程為:

II年的年份代號(hào)為,

由(I)知,當(dāng)時(shí),

故預(yù)測(cè)年該企業(yè)的收入為千萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的方程為,直線與曲線交于兩點(diǎn).

(1)求直線的標(biāo)準(zhǔn)參數(shù)方程;

(2)求的長(zhǎng);

(3)以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為;求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖像上有與軸平行的切線,求參數(shù)的取值范圍;

2)若函數(shù)處取得極值,且時(shí),恒成立,求參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:方案一:每戶每月收管理費(fèi)2元,月用電不超過30度時(shí),每度0.5;超過30度時(shí),超過部分按每度0.6元收取. 方案二:不收管理費(fèi),每度0.58.

(1)求方案一收費(fèi)元與用電量x ()之間的函數(shù)關(guān)系;

(2)老王家九月份按方案一交費(fèi)35元,問老王家該月用電多少度?

(3)老王家月用電最在什么范圍時(shí),選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若方程有2個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,試判斷的零點(diǎn)的個(gè)數(shù)。

(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形中,,沿折起,使二面角是大小為銳角的二面角,設(shè)在平面上的射影為

(1)當(dāng)為何值時(shí),三棱錐的體積最大?最大值為多少?

(2)當(dāng)時(shí),求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體

1)求AC所成角的大;

2)若E,F分別為AB,AD的中點(diǎn),求EF與平面所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案