【題目】如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長(zhǎng)為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點(diǎn),這一點(diǎn)恰好在圖中陰影部分的概率是(
A.
B.1﹣
C.
D.1﹣

【答案】D
【解析】解:設(shè)AC=1,在Rt△ACB中,∠ACB=90°,BC=2AC=2, ∴SABC= ACBC=1,
∵分別以A、B為圓心,AC的長(zhǎng)為半徑作扇形ACD和扇形BEF,
∴扇形ACD+扇形BEF的面積等于以1為半徑的圓的面積的四分之一,
∴S扇形ACD+S扇形BEF= ,
∴S陰影部分=1﹣ ,
∴在△ACB中任取一點(diǎn),這一點(diǎn)恰好在圖中陰影部分的概率是 =1﹣ ,
故選:D
【考點(diǎn)精析】利用幾何概型對(duì)題目進(jìn)行判斷即可得到答案,需要熟知幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】和諧高級(jí)中學(xué)共有學(xué)生570名,各班級(jí)人數(shù)如表:

一班

二班

三班

四班

高一

52

51

y

48

高二

48

x

49

47

高三

44

47

46

43

已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級(jí)學(xué)生的概率是
(1)求x,y的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取114名學(xué)生,應(yīng)分別在各年級(jí)抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在數(shù)列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍;
(Ⅲ)令Tn= + + +…+ (n∈N*),證明:對(duì)于任意的n∈N* , Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市隨機(jī)抽取一個(gè)月(30天)的空氣質(zhì)量指數(shù)API監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

(300,350]

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

2

4

5

9

4

3

3

(Ⅰ)根據(jù)以上數(shù)據(jù)估計(jì)該城市這30天空氣質(zhì)量指數(shù)API的平均值;
(Ⅱ)若該城市某企業(yè)因空氣污染每天造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為w)的關(guān)系式為:
S=
若在本月30天中隨機(jī)抽取一天,試估計(jì)該天經(jīng)濟(jì)損失S大于200元且不超過(guò)600元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點(diǎn).
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年12月1日,漢孝城際鐵路正式通車運(yùn)營(yíng).除始發(fā)站(漢口站)與終到站(孝感東站)外,目前沿途設(shè)有7個(gè)停靠站,其中,武漢市轄區(qū)內(nèi)有4站(后湖站、金銀潭站、天河機(jī)場(chǎng)站、天河街站),孝感市轄區(qū)內(nèi)有3站(閔集站、毛陳站、槐蔭站).為了了解該線路運(yùn)營(yíng)狀況,交通管理部門計(jì)劃從這7個(gè)車站中任選3站調(diào)研.
(1)求孝感市轄區(qū)內(nèi)至少選中1個(gè)車站的概率;
(2)若孝感市轄區(qū)內(nèi)共選中了X個(gè)車站,求隨機(jī)變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國(guó)數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問(wèn)何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長(zhǎng)度之和,則Sn=尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知: ;
;
,
利用上述結(jié)果,計(jì)算:13+23+33+…+n3=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長(zhǎng)為h米,燈桿AB長(zhǎng)為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
(1)設(shè)燈罩軸線與路面的交點(diǎn)為C,若OC=5 米,求燈柱OB長(zhǎng);
(2)設(shè)h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經(jīng)過(guò)點(diǎn)O,另一條與地面的交點(diǎn)為E(如圖2);
(i)求cosθ的值;
(ii)求該路燈照在路面上的寬度OE的長(zhǎng);

查看答案和解析>>

同步練習(xí)冊(cè)答案