【題目】已知: ;
;

利用上述結(jié)果,計(jì)算:13+23+33+…+n3=

【答案】
【解析】解:∵(n+1)4=n4+4n3+6n2+4n+1, ∴(n+1)4﹣n4=4n3+6n2+4n+1,
∴n4﹣(n﹣1)4=4(n﹣1)3+6(n﹣1)2+4(n﹣1)+1,

34﹣24=4×23+6×22+4×2+1
24﹣14=4×13+6×12+4×1+1
上述n個(gè)等式相加,得
(n+1)4﹣14=4(13+23+…+n3)+6(12+22+…+n2)+4(1+2+…+n)+n,
∴4(13+23+…+n3)=(n+1)4﹣1﹣6(12+22+…+n2)﹣4(1+2+…+n)﹣n
=(n+1)4﹣6× n(n+1)(2n+1)﹣4× ﹣(n+1)
=(n+1)[(n+1)3﹣n(2n+1)﹣2n﹣1]
=(n+1)(n3+n2
∴13+23+…+n3= ,
所以答案是
【考點(diǎn)精析】認(rèn)真審題,首先需要了解歸納推理(根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù),則不等式f(lnx)<﹣f(1)的解集為(
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點(diǎn),這一點(diǎn)恰好在圖中陰影部分的概率是(
A.
B.1﹣
C.
D.1﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了測量山頂M的海拔高度,飛機(jī)沿水平方向在A,B兩點(diǎn)進(jìn)行測量,A,B,M在同一個(gè)鉛垂面內(nèi)(如圖).能夠測量的數(shù)據(jù)有俯角、飛機(jī)的高度和A,B兩點(diǎn)間的距離.請(qǐng)你設(shè)計(jì)一個(gè)方案,包括:
(1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);
(2)用文字和公式寫出計(jì)算山頂M海拔高度的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實(shí)數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),則△ABC的形狀(
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙M:(x+1)2+y2= 的圓心為M,⊙N:(x﹣1)2+y2= 的圓心為N,一動(dòng)圓M內(nèi)切,與圓N外切. (Ⅰ)求動(dòng)圓圓心P的軌跡方程;
(Ⅱ)設(shè)A,B分別為曲線P與x軸的左右兩個(gè)交點(diǎn),過點(diǎn)(1,0)的直線l與曲線P交于C,D兩點(diǎn).若 =12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】使方程 ﹣x﹣m=0有兩個(gè)不等的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案