【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對(duì)生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:

(Ⅰ)(1)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過(guò)和不超過(guò)的次數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

改造前

改造后

試寫(xiě)出,,的值;

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

附:,

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對(duì)生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對(duì)生產(chǎn)線設(shè)定維護(hù)周期為天(即從開(kāi)工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)線一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,2,34.以生產(chǎn)線在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.

【答案】(Ⅰ)(1,,,,(2)有的把握認(rèn)為連續(xù)正常運(yùn)行時(shí)間有差異;(Ⅱ)分布列見(jiàn)解析,2.275萬(wàn)元.

【解析】

(Ⅰ)根據(jù)莖葉圖得到,,,計(jì)算,得到答案.

(Ⅱ)計(jì)算得到,得到分布列,計(jì)算數(shù)學(xué)期望得到答案.

(Ⅰ)(1)由莖葉圖知,根據(jù)莖葉圖可得:,,.

2)由于,所以有的把握認(rèn)為連續(xù)正常運(yùn)行時(shí)間有差異.

(Ⅱ)生產(chǎn)周期內(nèi)有4個(gè)維護(hù)周期,一個(gè)維護(hù)周期為30天,一個(gè)維護(hù)周期內(nèi),生產(chǎn)線需保障維護(hù)的概率為.

設(shè)一個(gè)生產(chǎn)周期內(nèi)需保障維護(hù)的次數(shù)為次,則正常維護(hù)費(fèi)為萬(wàn)元,保障維護(hù)費(fèi)為萬(wàn)元.

故一個(gè)生產(chǎn)周期內(nèi)需保障維護(hù)次時(shí)的生產(chǎn)維護(hù)費(fèi)為萬(wàn)元.

由于,設(shè)一個(gè)生產(chǎn)周期內(nèi)的生產(chǎn)維護(hù)費(fèi)為萬(wàn)元,則分布列為

2

2.2

2.6

3.2

4

萬(wàn)元.

故一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的期望值為2.275萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】臺(tái)球運(yùn)動(dòng)已有五、六百年的歷史,參與者用球桿在臺(tái)上擊球.若和光線一樣,臺(tái)球在球臺(tái)上碰到障礙物后也遵從反射定律如圖,有一張長(zhǎng)方形球臺(tái)ABCD,,現(xiàn)從角落A沿角的方向把球打出去,球經(jīng)2次碰撞球臺(tái)內(nèi)沿后進(jìn)入角落C的球袋中,則的值為(

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活水平的不斷提高,肥胖人數(shù)不斷增多.世界衛(wèi)生組織(WHO)常用身體質(zhì)量指數(shù)(BMI)來(lái)衡量人體胖瘦成度以及是否健康,其計(jì)算公式是.成人的BMI數(shù)值標(biāo)準(zhǔn)為:BMI偏瘦;BMI為正常;BMI為偏胖;BMI為肥胖.某研究機(jī)構(gòu)為了解某快遞公司員工的身體質(zhì)量指數(shù),研究人員從公司員工體檢數(shù)據(jù)中,抽取了8名員工(編號(hào)1-8)的身高cm)和體重kg)數(shù)據(jù),并計(jì)算得到他們的BMI(精確到0.1)如下表:

號(hào)

1

2

3

4

5

6

7

8

身高(cm

163

164

165

168

170

172

176

182

體重(kg

54

60

77

72

68

72

55

BMI(近似值)

20.3

22.3

28.3

25.5

23.5

23.7

23.2

16.6

1)現(xiàn)從這8名員工中選取3人進(jìn)行復(fù)檢,記抽取到BMI值為正常員工的人數(shù)為,求的分布列及數(shù)學(xué)期望.

2)研究機(jī)構(gòu)分析發(fā)現(xiàn)公司員工的身高cm)和體重kg)之間有較強(qiáng)的線性相關(guān)關(guān)系,在編號(hào)為6的體檢數(shù)據(jù)丟失之前調(diào)查員甲已進(jìn)行相關(guān)的數(shù)據(jù)分析,并計(jì)算得出該組數(shù)據(jù)的線性回歸方程為,且根據(jù)回歸方程預(yù)估一名身高為180cm的員工體重為71kg,計(jì)算得到的其它數(shù)據(jù)如下:,.

①求的值及表格中8名員工體重的平均值.

②在數(shù)據(jù)處理時(shí),調(diào)查員乙發(fā)現(xiàn)編號(hào)為8的員工體重?cái)?shù)據(jù)有誤,應(yīng)為63kg,身高數(shù)據(jù)無(wú)誤,請(qǐng)你根據(jù)調(diào)查員乙更正的數(shù)據(jù)重新計(jì)算線性回歸方程,并據(jù)此預(yù)估一名身高為180cm的員工的體重.

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形和菱形所在平面互相垂直,如圖,其中, , ,點(diǎn)為線段的中點(diǎn).

(Ⅰ)試問(wèn)在線段上是否存在點(diǎn),使得直線平面?若存在,請(qǐng)證明平面,并求出的值,若不存在,請(qǐng)說(shuō)明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中假命題是(

A.若隨機(jī)變量服從正態(tài)分布,則

B.已知直線平面,直線平面,則的必要不充分條件;

C.,則方向上的正射影的數(shù)量為

D.命題的否定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二進(jìn)制來(lái)源于我國(guó)古代的《易經(jīng)》,該書(shū)中有兩類(lèi)最基本的符號(hào):“─”﹣﹣,其中“─”在二進(jìn)制中記作“1”﹣﹣在二進(jìn)制中記作“0”.如符號(hào)對(duì)應(yīng)的二進(jìn)制數(shù)0112化為十進(jìn)制的計(jì)算如下:01120×22+1×21+1×20310.若從兩類(lèi)符號(hào)中任取2個(gè)符號(hào)進(jìn)行排列,則得到的二進(jìn)制數(shù)所對(duì)應(yīng)的十進(jìn)制數(shù)大于2的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處的切線斜率為,其中為自然對(duì)數(shù)的底數(shù).

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后、左右、上下均對(duì)稱,每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體有________個(gè)面,其體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盲盒里面通常裝的是動(dòng)漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來(lái)的玩偶.由于盒子上沒(méi)有標(biāo)注,購(gòu)買(mǎi)者只有打開(kāi)才會(huì)知道自己買(mǎi)到了什么,因此這種驚喜吸引了眾多年輕人,形成了盲盒經(jīng)濟(jì).某款盲盒內(nèi)可能裝有某一套玩偶的、三種樣式,且每個(gè)盲盒只裝一個(gè).

1)若每個(gè)盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購(gòu)買(mǎi)兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?

2)某銷(xiāo)售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問(wèn)卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購(gòu)買(mǎi)了該款盲盒,在這些購(gòu)買(mǎi)者當(dāng)中,女生占;而在未購(gòu)買(mǎi)者當(dāng)中,男生女生各占.請(qǐng)根據(jù)以上信息填寫(xiě)下表,并分析是否有的把握認(rèn)為購(gòu)買(mǎi)該款盲盒與性別有關(guān)?

女生

男生

總計(jì)

購(gòu)買(mǎi)

未購(gòu)買(mǎi)

總計(jì)

參考公式:,其中

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)該銷(xiāo)售網(wǎng)點(diǎn)已經(jīng)售賣(mài)該款盲盒6周,并記錄了銷(xiāo)售情況,如下表:

周數(shù)

1

2

3

4

5

6

盒數(shù)

16

______

23

25

26

30

由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷(xiāo)售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).

①請(qǐng)用45、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程

(注:,

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)①中所得的線性回歸方程是否可靠?

③如果通過(guò)②的檢驗(yàn)得到的回歸直線方程可靠,我們可以認(rèn)為第2周賣(mài)出的盒數(shù)誤差也不超過(guò)2盒,請(qǐng)你求出第2周賣(mài)出的盒數(shù)的可能取值;如果不可靠,請(qǐng)你設(shè)計(jì)一個(gè)估計(jì)第2周賣(mài)出的盒數(shù)的方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案