【題目】2019年上半年我國多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn),決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為與具有線性回歸關(guān)系,請幫他求出關(guān)于的線性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評價(jià)兩種模型的擬合結(jié)果,請完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較與的大小,判斷哪個(gè)模型擬合效果更好;
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元.若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:,
參考數(shù)據(jù): .
【答案】(1);(2)①見解析;②
因?yàn)?/span>,故模型的擬合效果更好;(2)1.2萬頭,理由見解析.
【解析】
(1)根據(jù)所給數(shù)據(jù)計(jì)算,再計(jì)算出方程中的系數(shù),得方程;
(2)①模型甲根據(jù)所求線性回歸方程計(jì)算估計(jì)值,得殘差,模型乙直接根據(jù)估計(jì)值得殘差,②計(jì)算出,可得;
(3)利用模型乙計(jì)算出成本,再計(jì)算出利潤,然后比較可得.
(1)由題知:,
,故.
(2)①經(jīng)計(jì)算,可得下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | 2.80 | 2.55 | 2.30 | 2.05 | 1.30 |
殘差 | 0.40 | -0.15 | -0.30 | -0.15 | 0.20 | |
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
因?yàn)?/span>,故模型的擬合效果更好.
(3)若生豬存欄數(shù)量達(dá)到1萬頭,由(2)模型乙可知,每頭豬的成本為元,
這樣一天獲得的總利潤為元.
若生豬存欄數(shù)量達(dá)到1.2萬頭,
由(2)模型乙可知,每頭豬的成本為元,
一天獲得的總利潤為元,
因?yàn)?/span>,所以選擇擇生豬存欄數(shù)量1.2萬頭能獲得更多利潤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)P,Q分別是曲線y=xe﹣x(e是自然對數(shù)的底數(shù))和直線y=x+3上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間距離的最小值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年東京夏季奧運(yùn)會(huì)將設(shè)置米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國家派出2男2女共計(jì)4名運(yùn)動(dòng)員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運(yùn)動(dòng)員完成, 每個(gè)運(yùn)動(dòng)員都要出場. 現(xiàn)在中國隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運(yùn)動(dòng)員則四種泳姿都可以上,那么中國隊(duì)共有( )種兵布陣的方式.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在處的切線平行于直線,求實(shí)數(shù)a的值;
(Ⅱ)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(Ⅲ)在(Ⅰ)的條件下,若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】牛頓迭代法(Newton's method)又稱牛頓–拉夫遜方法(Newton–Raphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)是的根,選取作為初始近似值,過點(diǎn)作曲線的切線與軸的交點(diǎn)的橫坐標(biāo),稱是的一次近似值,過點(diǎn)作曲線的切線,則該切線與軸的交點(diǎn)的橫坐標(biāo)為,稱是的二次近似值.重復(fù)以上過程,直到的近似值足夠小,即把作為的近似解.設(shè)構(gòu)成數(shù)列.對于下列結(jié)論:
①;
②;
③;
④.
其中正確結(jié)論的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮奶店每天購進(jìn)30瓶鮮牛奶,且當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式(n∈N).鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶)繪制出如下的柱形圖(例如:日需求量為25瓶時(shí),頻數(shù)為5):
(1)求這100天的日利潤(單位:元)的平均數(shù);
(2)以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:內(nèi)有一點(diǎn),過的兩條直線,分別與拋物線交于,和,兩點(diǎn),且滿足,,已知線段的中點(diǎn)為,直線的斜率為.
(1)求證:點(diǎn)的橫坐標(biāo)為定值;
(2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若,不等式恒成立,求的取值范圍;
(3)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)若“x∈A,使得x∈B”為真命題,求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使“x∈A”是“X∈B”必要不充分條件,若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com