【題目】設(shè)點P,Q分別是曲線y=xe﹣x(e是自然對數(shù)的底數(shù))和直線y=x+3上的動點,則P,Q兩點間距離的最小值為( 。

A. B. C. D.

【答案】B

【解析】

對曲線yxex進(jìn)行求導(dǎo),求出點P的坐標(biāo),分析知道,過點P直線與直線yx+2平行且與曲線相切于點P,從而求出P點坐標(biāo),根據(jù)點到直線的距離進(jìn)行求解即可.

∵點P是曲線yxex上的任意一點,和直線yx+3上的動點Q,

P,Q兩點間的距離的最小值,就是求出曲線yxex上與直線yx+3平行的切線與直線yx+3之間的距離.

y′=(1﹣xex,令y′=(1﹣xex=1,解得x=0,

當(dāng)x=0,y=0時,點P(0,0),

P,Q兩點間的距離的最小值,即為點P(0,0)到直線yx+3的距離,

dmin.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正方形ABCD沿PD、PC翻折至A、B兩點重合,其中P是AB中點,在折成的三棱錐A(B)-PDC中,點Q在平面PDC內(nèi)運動,且直線AQ與棱AP所成角為60,則點Q運動的軌跡是

A. B. 橢圓 C. 雙曲線 D. 拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)若,求曲線在點處的切線方程;

2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考改革后,假設(shè)某命題省份只統(tǒng)一考試數(shù)學(xué)和語文,英語學(xué)科改為參加等級考試,每年考兩次,分別放在每個學(xué)年的上下學(xué)期,其余六科政治,歷史,地理,物理,化學(xué),生物則以該省的省會考成績?yōu)闇?zhǔn).考生從中選擇三科成績,參加大學(xué)相關(guān)院校的錄取.

1)若英語等級考試有一次為優(yōu),即可達(dá)到某“雙一流”院校的錄取要求.假設(shè)某考生參加每次英語等級考試事件是相互獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率為,求該考生直到高二下期英語等級考試才為優(yōu)的概率;

2)據(jù)預(yù)測,要想報考某“雙一流”院校,省會考的六科成績都在95分以上,才有可能被該校錄取.假設(shè)某考生在省會考六科的成績,考到95分以上的概率都是,設(shè)該考生在省會考時考到95以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 命題“若x2=1,則x≠1”的否命題是“若x2=1,則x=1”

B. 命題“”的否定是“x∈R,x2﹣x>0”

C. “y=f(x)在x0處有極值”是“f'(x0)=0”的充要條件

D. 命題“若函數(shù)f(x)=x2﹣ax+1有零點,則“a≥2或a≤﹣2”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車的購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽油費約為萬元,年維修費用第一年是萬元,第二年是萬元,第三年是萬元,,以后逐年遞增萬元汽車的購車費用、每年使用的保險費、養(yǎng)路費、汽油費、維修費用的和平均攤到每一年的費用叫做年平均費用.設(shè)這種汽車使用年的維修費用的和為,年平均費用為.

(1)求出函數(shù),的解析式;

(2)這種汽車使用多少年時,它的年平均費用最?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,EPC上一點,當(dāng)FDC的中點時,EF平行于平面PAD.

(Ⅰ)求證:平面PCB

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,對于區(qū)間,若滿足,則稱區(qū)間為函數(shù)區(qū)間.

1)證明:區(qū)間是函數(shù)區(qū)間;

2)若區(qū)間是函數(shù)區(qū)間,求實數(shù)的取值范圍;

3)已知函數(shù)在區(qū)間上的圖象連續(xù)不斷,且在上僅有個零點,證明:區(qū)間不是函數(shù)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年上半年我國多個省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴(yán)重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn),決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為具有線性回歸關(guān)系,請幫他求出關(guān)于的線性回歸方程(保留小數(shù)點后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評價兩種模型的擬合結(jié)果,請完成以下任務(wù):

①完成下表(計算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計值

殘差

模型乙

估計值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好;

3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2.若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:,

參考數(shù)據(jù): .

查看答案和解析>>

同步練習(xí)冊答案