【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機(jī)抽取的100個產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
【答案】(1),82.5;(2)分布列見解析,.
【解析】
(1)由頻率分布直方圖的性質(zhì),即可解得的值,再利用中位數(shù)的計(jì)算,求得綜合評分的中位數(shù);
(2)由(1)與頻率分布直方圖可知,一等品的頻率為,得出所抽取的產(chǎn)品為一等品的
(1)由頻率分布直方圖的性質(zhì),可得,
解得.
令中位數(shù)為x,則,
解得,所以綜合評分的中位數(shù)為82.5.
(2)由(1)與頻率分布直方圖可知,一等品的頻率為,
即概率為0.6,
設(shè)所抽取的產(chǎn)品為一等品的個數(shù)為X,則,
所以,,
,.
所以X的分布列為
X | 0 | 1 | 2 | 3 |
P |
所抽取的產(chǎn)品為一等品的數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn)、以軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,若直線與曲線交于、兩點(diǎn).
(1)求線段的中點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,在四邊形ABCD中,∠ABC=,AB=4,BC=3,CD=,AD=2,PA=4.
(1)證明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校水果店有蘋果、梨、香蕉、石榴、橘子、葡萄、西柚等種水果,西柚?jǐn)?shù)量不多,只夠一個人購買,甲乙丙丁戊位同學(xué)去購買,每人只能選擇其中一種,這位同學(xué)購買后,恰好買了其中三種水果,則他們購買水果的可能情況有___________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是雙曲線的左、右焦點(diǎn),點(diǎn)P為上異于頂點(diǎn)的點(diǎn),直線l分別與以,為直徑的圓相切于A,B兩點(diǎn),若向量,的夾角為,則=___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線,經(jīng)過點(diǎn)的直線與該雙曲線交于兩點(diǎn).
(1)若與軸垂直,且,求的值;
(2)若,且的橫坐標(biāo)之和為,證明:.
(3)設(shè)直線與軸交于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)、為曲線上位于第一,二象限的兩個動點(diǎn),且,射線,交曲線分別于點(diǎn),.求面積的最小值,并求此時四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且
(1)求數(shù)列通項(xiàng)公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com