【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,為的中點(diǎn).
(I)求證,平面;
(II)若,求三棱錐的體積.
【答案】(I)證明見解析;(II).
【解析】
(I)取的中點(diǎn),連接.連接,交于點(diǎn),連接交于點(diǎn),連接.由中位線定理得出為的中點(diǎn),結(jié)合為的中點(diǎn),得出,由線面平行的判定定理即可求解;
(II)利用余弦定理得出,結(jié)合勾股定理得到,因?yàn)樗倪呅?/span>是平行四邊形,得到DC為三棱錐D-SAC的高,結(jié)合,得到,即可求出三棱錐的體積.
(I)證明:取的中點(diǎn),連接.連接,交于點(diǎn),
連接交于點(diǎn),連接.
因?yàn)?/span>為的中點(diǎn),是的中點(diǎn),所以.
又,所以為的中點(diǎn),所以為的中點(diǎn),
又為的中點(diǎn),所以.
因?yàn)?/span>平面,平面,
所以平面.
(II)因?yàn)?/span>.
由余弦定理得,
所以,所以.
因?yàn)?/span>平面,所以,
所以,所以平面.
因?yàn)樗倪呅?/span>是平行四邊形
所以DC為三棱錐D-SAC的高
因?yàn)?/span>,
所以,
即三棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,是棱上動(dòng)點(diǎn),下列說法正確的是( )
A. 對(duì)任意動(dòng)點(diǎn),在平面內(nèi)不存在與平面平行的直線
B. 對(duì)任意動(dòng)點(diǎn),在平面內(nèi)存在與平面垂直的直線
C. 當(dāng)點(diǎn)從運(yùn)動(dòng)到的過程中,與平面所成的角變大
D. 當(dāng)點(diǎn)從運(yùn)動(dòng)到的過程中,點(diǎn)到平面的距離逐漸變小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD由Rt△ABC和Rt△BCD拼接而成,其中∠BAC=∠BCD=90°,∠DBC=30°,AB=AC,,將△ABC沿著BC折起,
(1)若,求異面直線AB和CD所成角的余弦值;
(2)當(dāng)四面體ABCD的體積最大時(shí),求二面角A﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】顧客請(qǐng)一位工藝師把、兩件玉石原料各制成一件工藝品,工藝師帶一位徒弟完成這項(xiàng)任務(wù),每件原料先由徒弟完成粗加工,再由工藝師進(jìn)行精加工完成制作,兩件工藝品都完成后交付顧客,兩件原料每道工序所需時(shí)間(單位:工作日)如下:
則最短交貨期為_______個(gè)工作日.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶近年來旅游業(yè)高速發(fā)展,有很多著名景點(diǎn),如洪崖洞、磁器口、朝天門、李子壩等.為了解端午節(jié)當(dāng)日朝天門景點(diǎn)游客年齡的分布情況,從年齡在22~52歲之間的旅游客中隨機(jī)抽取了1000人,制作了如圖的頻率分布直方圖.
(1)求抽取的1000人的年齡的平均數(shù)、中位數(shù);(每一組的年齡取中間值)
(2)現(xiàn)從中按照分層抽樣抽取8人,再從這8人中隨機(jī)抽取3人,記這3人中年齡在的人數(shù)為,求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)A類工人中和B類工人中各抽查多少工人?
(2)從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2.
表一
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | 5 | 3 |
表二
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | 36 | 18 |
①先確定再補(bǔ)全下列頻率分布直方圖(用陰影部分表示).
②就生產(chǎn)能力而言,類工人中個(gè)體間的差異程度與類工人中個(gè)體間的差異程度哪個(gè)更?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)
③分別估計(jì)類工人生產(chǎn)能力的平均數(shù)和中位數(shù)(求平均數(shù)時(shí)同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;
(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)研機(jī)構(gòu),對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對(duì)應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com