【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點中隨機選取3個點構成三角形,設隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機變量的概率分布及其數(shù)學期望.

【答案】(1)(2)見解析

【解析】

1)由題意,分別得出“從5個頂點中隨機選取3個點構成三角形”和“”所包含的基本事件個數(shù),基本事件個數(shù)比即為所求概率;

2)先由題意得到的可能取值,求出對應的概率,進而可得到分布列,求出期望.

解:(1)從5個頂點中隨機選取3個點構成三角形,

共有種取法.其中的三角形如

這類三角形共有個.

因此.

(2)由題意,的可能取值為,2,.

其中的三角形是側面,這類三角形共有4個;

其中的三角形有兩個,.

因此,.

所以隨機變量的概率分布列為:

2

所求數(shù)學期望

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一工廠對某條生產(chǎn)線加工零件所花費時間進行統(tǒng)計,得到如下表的數(shù)據(jù):

零件數(shù)x(個)

10

20

30

40

50

加工時間y(分鐘)

62

68

75

82

88

1)從加工時間的五組數(shù)據(jù)中隨機選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時間的均值的概率;

2)若加工時間與零件數(shù)具有相關關系,求關于的回歸直線方程;若需加工個零件,根據(jù)回歸直線預測其需要多長時間.

(,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且

)若為線段的中點,求證平面;

)求三棱錐體積的最大值;

)若,點在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自201911日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:

個人所得稅稅率表(調整前)

個人所得稅稅率表(調整后)

免征額3500

免征額5000

級數(shù)

全月應納稅所得額

稅率(%)

級數(shù)

全月應納稅所得額

稅率(%)

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數(shù)表達式;

(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表

收入(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率

(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:

①若命題,,則,;

②將的圖象沿軸向右平移個單位,得到的圖象對應函數(shù)為;

③“”是“”的充分必要條件;

④已知為圓內異于圓心的一點,則直線與該圓相交.

其中正確的個數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓N與圓M關于直線對稱.

1)求圓N的方程.

2)是否存在過點P的無窮多對互相垂直的直線,使得被圓M截得的弦長與被圓N截得的弦長相等?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正數(shù)數(shù)列的前項和為,對于任意,的等差中項.

1)求數(shù)列的通項公式;

2)設,的前項和,是否存在常數(shù),對任意,使恒成立?若存在,求取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質量指標會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質量指標

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計為該組半成品的質量指標,估算流水線第一段生產(chǎn)的半成品質量指標的平均值;

(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設備后,流水線第一段半成品的質量指標服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設備?說明理由.

(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習冊答案