【題目】幻彩摩天輪位于中山市西區(qū)興中廣場(chǎng)C4層高的建筑之上,與中山市第一家四星級(jí)酒店——富華酒店隔河相望,其外觀是參考世界最高的摩天輪新加坡飛行者的設(shè)計(jì),輪體上有36個(gè)吊艙,共可同時(shí)承載288人從高空俯瞰岐江一河兩岸的美景幻彩摩天輪直徑為83m,每20min轉(zhuǎn)一圈,最高點(diǎn)離地108m,摩天輪上的點(diǎn)P的起始位置在最低點(diǎn)處已知在時(shí)刻tmin)時(shí)P距離地面的高度,(其中),

1)求的函數(shù)解析式

2)當(dāng)離地面m以上時(shí),可以俯瞰富華酒店頂樓,求轉(zhuǎn)一圈中有多少時(shí)間可以俯瞰富華酒店頂樓?

【答案】12

【解析】

(1)由最高點(diǎn)與最低點(diǎn)求出Ah,由周期求出,再代入特殊點(diǎn)即可求得解析式;(2)由題意可得,化簡(jiǎn)得,求出t的取值范圍即可得解.

1)依題意,,則,

因?yàn)?/span>,所以,,

,所以.

.

2)依題意,,

,

,即.

,

∴轉(zhuǎn)一圈中有鐘時(shí)間可以俯瞰富華酒店頂樓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,,,E為PC的中點(diǎn),

(1)求證:

(2)若與面ABCD所成角為,P在面ABCD射影為O,問是否在BC上存在一點(diǎn)F,使面與面PAB所成的角為,若存在,試求點(diǎn)F的位置,不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),有兩個(gè)零點(diǎn)為

1)求、的值;

2)證明:;

3)用單調(diào)性定義證明函數(shù)在區(qū)間上是增函數(shù);

4)求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為原點(diǎn),且與直線相切.

1)求圓的方程;

2)點(diǎn)在直線上,過點(diǎn)引圓的兩條切線,,切點(diǎn)為,,求證:直線恒過定點(diǎn).

3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“應(yīng)用”的用戶中隨機(jī)抽取了100名用戶進(jìn)行調(diào)查得到如下數(shù)據(jù):

每周使用時(shí)間

及以上

4

3

3

7

6

30

6

5

4

4

8

20

合計(jì)

10

8

7

11

14

50

1)在每周使用該“應(yīng)用”時(shí)間不超過的樣本中,按性別分層抽樣,隨機(jī)抽取5名用戶:

①求抽取的5名用戶中男,女用戶各多少人;

②從這5名用戶中隨機(jī)抽取2名用戶,求抽取的2名用戶均為男用戶的概率.

2)如果每周使用該“應(yīng)用”超過的用戶認(rèn)為“喜歡該應(yīng)用”,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“喜歡該應(yīng)用”與性別有關(guān).

參考公式:,其中

下面的臨界值表僅供參考:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,

若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與x軸交點(diǎn)為,與此交點(diǎn)距離最小的最高點(diǎn)坐標(biāo)為.

(Ⅰ)求函數(shù)的表達(dá)式;

(Ⅱ)若函數(shù)滿足方程,求方程在內(nèi)的所有實(shí)數(shù)根之和;

(Ⅲ)把函數(shù)的圖像的周期擴(kuò)大為原來的兩倍,然后向右平移個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來的兩倍,最后向上平移一個(gè)單位得到函數(shù)的圖像若對(duì)任意的,方程在區(qū)間上至多有一個(gè)解,求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),且滿足.

(1)求a的值;

(2)設(shè)函數(shù),(),若存在,,使得成立,求實(shí)數(shù)t的取值范圍;

(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右頂點(diǎn)和上頂點(diǎn)分別為,斜率為的直線與橢圓交于兩點(diǎn)(點(diǎn)在第一象限).

(Ⅰ)求證:直線的斜率之和為定值;

(Ⅱ)求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案