如圖,三棱柱的側(cè)棱與底面垂直,底面是等腰直角三角形,,側(cè)棱,分別是與的中點(diǎn),點(diǎn)在平面上的射影是的垂心
(1)求證:;
(2)求與平面所成角的大小.
(1)證明略(2)
解析試題分析:(Ⅰ)通過線面垂直找到,所以平面,所以;(Ⅱ)通過向量法解題,先建系寫出各點(diǎn)坐標(biāo),求平面的一個(gè)法向量,然后求,所以求出與平面所成角的為.
試題解析:(Ⅰ)∵點(diǎn)在平面上的射影是的垂心.連結(jié),則,又平面,∴∴平面,∴即. (5分)
(Ⅱ)以點(diǎn)為坐標(biāo)原點(diǎn),分別以射線為軸、為軸、為軸建立空間直角坐標(biāo)系。
設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn),,. (6分)
由(Ⅰ)知,又,.
由可得 (8分)
∴,,,.
,,
設(shè)平面求的一個(gè)法向量,
∴,
取 (10分)
故,
所以與平面所成角的為. (12分)
考點(diǎn):1.線線垂直;2.線面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,菱形的邊長(zhǎng)為4,,.將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在各棱長(zhǎng)均為的三棱柱中,側(cè)面底面,.
(1)求側(cè)棱與平面所成角的正弦值的大小;
(2)已知點(diǎn)滿足,在直線上是否存在點(diǎn),使?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:正方體的棱長(zhǎng)為1,點(diǎn)分別是和的中點(diǎn)
(1)求證:
(2)求異面直線與所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形是正方形,⊥平面,∥,、、分別為、、的中點(diǎn),且.
(1)求證:平面⊥平面;
(2)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com