如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.

(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.

(1)根據(jù)題意,由于M為PB的中點,取PA中點E,能推理得到ME//AB,得到證明
(2)

解析試題分析:解:
(1)M為PB的中點,取PA中點E,連ME,DE
則ME//AB, 且ME=AB,又CD//AB, 且CD=AB, 四邊形CDEM為平行四邊形,
CM//ED,  CM面PAD,  MC//平面PAD
(2)平面ABCD, PABC
, BCAC
BC平面PAC,  平面PAC平面PBC, 取PC中點N,則MN//BC,
從而MN平面PAC,所以為直線MC與平面PAC所成角,記為,
NC=,  MC,
故直線MC與平面PAC所成角的余弦值為
考點:線面平行和線面角
點評:主要是考查了空間中線面平行以及線面角的求解的綜合運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱的側棱與底面垂直,底面是等腰直角三角形,,側棱,分別是的中點,點在平面上的射影是的垂心

(1)求證:;
(2)求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,

(I)求證
(II)設

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.

(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直四棱柱中,已知,

(Ⅰ)求證:;
(Ⅱ)設上一點,試確定的位置,使平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱的所有棱長都為,且平面中點.

(Ⅰ)求證:;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,的中點.

(Ⅰ) 求證://平面
(Ⅱ) 在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側面底面,若、分別為的中點.

(Ⅰ) 求證://平面;
(Ⅱ) 求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,.

(1)求證:平面;
(2)設的中點為,求證:平面
(3)設平面將幾何體分成的兩個錐體的體積分別為,,求

查看答案和解析>>

同步練習冊答案