【題目】如圖,在同一個(gè)平面內(nèi),向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
【答案】3
【解析】解:如圖所示,建立直角坐標(biāo)系.A(1,0).
由 與 的夾角為α,且tanα=7.
∴cosα= ,sinα= .
∴C .
cos(α+45°)= (cosα﹣sinα)= .
sin(α+45°)= (sinα+cosα)= .
∴B .
∵ =m +n (m,n∈R),
∴ =m﹣ n, =0+ n,
解得n= ,m= .
則m+n=3.
故答案為:3.
如圖所示,建立直角坐標(biāo)系.A(1,0).由 與 的夾角為α,且tanα=7.可得cosα= ,sinα= .C .可得cos(α+45°)= .sin(α+45°)= .B .利用 =m +n (m,n∈R),即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體ABCD中,AB,BC,CD兩兩互相垂直,且BC=CD=1.
(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求證:M為PB的中點(diǎn);
(2)求二面角B﹣PD﹣A的大小;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如圖,以C為原點(diǎn),分別以CA,CB,CC1為x,y,z軸建立空間直角坐標(biāo)系.
(1)求平面A1B1C的法向量;
(2)求直線AC與平面A1B1C夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐O-ABCD中,BC⊥平面OAB,E為OB中點(diǎn),OA=AD=2AB=2,OB=.
(1)求證:平面OAD⊥平面ABCD;
(2)求二面角B-AC-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)證明:對(duì)任意實(shí)數(shù),直線恒過定點(diǎn)且與圓交于兩個(gè)不同點(diǎn);
(2)求直線被圓截得的弦長最小時(shí)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,分別是的中點(diǎn).
(1)求證:平面;
(2)過點(diǎn)作一個(gè)截面,使平面平面,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com