【題目】如圖,在三棱柱中,分別是的中點.

(1)求證:平面;

(2)過點作一個截面,使平面平面,并證明.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)AB的中點G,利用平幾知識得平行四邊形,即得線線平行,再根據(jù)線面平行判定定理得結(jié)論,(2)AC的中點H,再根據(jù)線面平行判定定理得線面平行,最后根據(jù)面面平行判定定理得結(jié)論.

(1)證明:取AB的中點G,連接EG,FG.

EF分別是A1C1,BC的中點,

.

,∴,

∴四邊形FGEC1為平行四邊形.∴C1FEG.

又∵EG平面ABEC1F平面ABE,

C1F∥平面ABE.

(2)解:取的中點,連接、、

則平面就是截面.

證明:∵的中點,

,∴為平行四邊形

又∵,,

,,,

,

∴面,即面.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, , 的夾角為α,且tanα=7, 的夾角為45°.若 =m +n (m,n∈R),則m+n=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若橢圓的中心在原點,焦點在軸上,點是橢圓上的一點,軸上的射影恰為橢圓的左焦點,與中心的連線平行于右頂點與上頂點的連線,且左焦點與左頂點的距離等于,試求橢圓的離心率及其方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一種設(shè)備的單價為,設(shè)備維修和消耗費用第一年為以后每年增加是常數(shù).用表示設(shè)備使用的年數(shù),記設(shè)備年平均費用為, (設(shè)備單價設(shè)備維修和消耗費用)設(shè)備使用的年數(shù).

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)當, 求這種設(shè)備的最佳更新年限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,在直線

(1)求數(shù)列{an}的通項公式

(2)令,數(shù)列的前n項和為

(ⅰ)求;

(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A,B為曲線C:y= 上兩點,A與B的橫坐標之和為4.(12分)
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin(ωx﹣ )+b(ω>0),且函數(shù)圖象的對稱中心到對稱軸的最小距離為 ,當x∈[0, ]時,f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移 個單位長度得到函數(shù)g(x)圖象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案