【題目】一種設(shè)備的單價(jià)為,設(shè)備維修和消耗費(fèi)用第一年為以后每年增加是常數(shù).用表示設(shè)備使用的年數(shù),記設(shè)備年平均費(fèi)用為 (設(shè)備單價(jià)設(shè)備維修和消耗費(fèi)用)設(shè)備使用的年數(shù).

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)當(dāng), 時(shí)求這種設(shè)備的最佳更新年限.

【答案】(Ⅰ);(Ⅱ)15

【解析】試題分析:

()由題意可知設(shè)備維修和消耗費(fèi)用構(gòu)成以為首項(xiàng), 為公差的等差數(shù)列,結(jié)合等差數(shù)列前n項(xiàng)和公式可得

()由題意結(jié)合均值不等式的結(jié)論有,則,當(dāng)且僅當(dāng)時(shí),年平均消耗費(fèi)用取得最小值,即設(shè)備的最佳更新年限是15.

試題解析:

Ⅰ)由題意,設(shè)備維修和消耗費(fèi)用構(gòu)成以為首項(xiàng), 為公差的等差數(shù)列,

因此年維修消耗費(fèi)用為

于是

,所以

,

當(dāng)且僅當(dāng),即, 時(shí),年平均消耗費(fèi)用取得最小值

所以設(shè)備的最佳更新年限是15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x<1},B={x|3x<1},則(  )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:

①“的充要條件;

②“一元二次不等式的解集為R”的充要條件;

③“直線(xiàn)平行于直線(xiàn)的充分不必要條件;

④“的必要不充分條件.

其中真命題的序號(hào)為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,分別是的中點(diǎn).

(1)求證:平面;

(2)過(guò)點(diǎn)作一個(gè)截面,使平面平面,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估.將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評(píng)估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示.

評(píng)估得分

[60,70)

[70,80)

[80,90)

[90,100)

評(píng)定等級(jí)

D

C

B

A

(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);

(2)從評(píng)估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營(yíng)銷(xiāo)經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有數(shù)列1,2,2,3,3,3,4,4,4,4,….

(1)問(wèn)10是該數(shù)列的第幾項(xiàng)到第幾項(xiàng)?

(2)求第100項(xiàng).

(3)求前100項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂(lè)園,該游樂(lè)區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂(lè)區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂(lè)區(qū),AB、BC,CD,DE,EA,BE為游樂(lè)園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.

(1)求道路BE的長(zhǎng)度;
(2)求道路AB,AE長(zhǎng)度之和的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案