【題目】某學(xué)校為了解學(xué)生對(duì)食堂用餐的滿意度,從全校在食堂用餐的3000名學(xué)生中,隨機(jī)抽取100名學(xué)生對(duì)食堂用餐的滿意度進(jìn)行評(píng)分.根據(jù)學(xué)生對(duì)食堂用餐滿意度的評(píng)分,得到如圖所示的頻率分布直方圖,

1)求頻率分布直方圖中a的值及該樣本的中位數(shù)

2)規(guī)定:學(xué)生對(duì)食堂用餐滿意度的評(píng)分不高于80分為不滿意,試估計(jì)該校在食堂用餐的3000名學(xué)生中不滿意的人數(shù).

【答案】1,;(2.

【解析】

1)根據(jù)頻率的總和為計(jì)算出的值,再根據(jù)中位數(shù)兩邊的頻率為計(jì)算出中位數(shù)的值;

2)先根據(jù)頻率分布直方圖計(jì)算出“不滿意”的頻率,然后即可估計(jì)出名學(xué)生中“不滿意”的人數(shù).

1)因?yàn)?/span>,所以,

又因?yàn)榍?/span>組頻率之和為

組頻率之和為,

所以中位數(shù)為:;

2)由頻率分布直方圖可知樣本中“不滿意”的頻率為:,

所以名學(xué)生中“不滿意”的人數(shù)大約為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度,行車道總寬度,側(cè)墻面高, ,弧頂高

)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.

)為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請(qǐng)計(jì)算車輛通過隧道的限制高度是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司決定每月給推銷員確定個(gè)具體的銷售目標(biāo),對(duì)推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個(gè)月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.

1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.

②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬元時(shí),能夠使70%的推銷員完成任務(wù)?并說明理由.

2)該公司決定從月銷售額為的兩個(gè)小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來自同一個(gè)小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓ab0)經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知A0b),Ba0),點(diǎn)P是橢圓C上位于第三象限的動(dòng)點(diǎn),直線AP、BP分別將x軸、y軸于點(diǎn)M、N,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù)滿足,且,則稱的一個(gè)點(diǎn).

(1)證明:函數(shù)不存在點(diǎn);

(2)若函數(shù)存在點(diǎn),求的范圍;

(3)已知函數(shù),證明:存在正實(shí)數(shù),對(duì)于區(qū)間內(nèi)任意一個(gè)皆是函數(shù)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個(gè)數(shù)滿足,則稱為這三個(gè)數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù)),A,BC上的動(dòng)點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為.

1)求橢圓C的極坐標(biāo)方程和點(diǎn)D的直角坐標(biāo);

2)利用橢圓C的極坐標(biāo)方程證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50,A類轎車有10


轎車A

轎車B

轎車C

舒適型

100

150

z

標(biāo)準(zhǔn)型

300

450

600

1)求下表中z的值;

2)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8,經(jīng)檢測(cè)它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)得分?jǐn)?shù)記這8輛轎車的得分的平均數(shù)為,定義事件{,且函數(shù)沒有零點(diǎn)},求事件發(fā)生的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案