【題目】已知函數(shù),且.
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有最值,寫(xiě)出的取值范圍.(只需寫(xiě)出結(jié)論)
【答案】(1) ;(2)詳見(jiàn)解析;(3)
【解析】試題分析:(Ⅰ)求導(dǎo),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解;(Ⅱ)求導(dǎo),利用分類(lèi)討論思想討論導(dǎo)函數(shù)的符號(hào)變換,進(jìn)而得到函數(shù)的單調(diào)區(qū)間;(Ⅲ)根據(jù)前一問(wèn)直接給出答案即可.
試題解析:(Ⅰ)當(dāng)時(shí),由題設(shè)知.
因?yàn)?/span>,
所以, .
所以在處的切線方程為.
(Ⅱ)因?yàn)?/span>,所以 .
當(dāng)時(shí),定義域?yàn)?/span> .
且
故的單調(diào)遞減區(qū)間為 ……5分
當(dāng)時(shí),定義域?yàn)?/span>. 當(dāng)變化時(shí), , :
x | |||||
— | 0 | + | 0 | — | |
單調(diào)減 | 極小值 | 單調(diào)增 | 極大值 | 單調(diào)減 |
故的單調(diào)遞減區(qū)間為, ,
單調(diào)遞增區(qū)間為.
綜上所述,
當(dāng)時(shí), 的單調(diào)遞減區(qū)間為;
當(dāng)時(shí),故的單調(diào)遞減區(qū)間為, ,
單調(diào)遞增區(qū)間為.
(Ⅲ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個(gè)動(dòng)點(diǎn),∠CPB=α,∠DPA=β. (Ⅰ)當(dāng) 最小時(shí),求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,試判斷函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值,(可能要用的數(shù)據(jù): ; ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P在圓C外,過(guò)P作圓C的切線,設(shè)切點(diǎn)為M.
(1)若點(diǎn)P運(yùn)動(dòng)到(1,3)處,求此時(shí)切線l的方程;
(2)求滿(mǎn)足條件|PM|=|PO|的點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實(shí)數(shù)a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 的展開(kāi)式的系數(shù)和比(3x﹣1)n的展開(kāi)式的系數(shù)和大992,求(2x﹣ )2n的展開(kāi)式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對(duì)值最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com