【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA=1,PC=3,BC=2,sin∠PCA,E,F,G分別為線段的PC,PB,AB中點(diǎn),且BE.
(1)求證:AB⊥BC;
(2)若M為線段BC上一點(diǎn),求三棱錐M﹣EFG的體積.
【答案】(1)見解析;(2)
【解析】
(1)先證明PA⊥平面ABC,再證明BC⊥BP,即可得BC⊥平面PAB,即可得證;
(2)由BC∥平面EFG可得VM﹣EFG=VB﹣EFG=VE﹣BFG,證明EF⊥平面BFG后求出長度即可得解.
(1)證明:∵PA=1,PC=3,,∴PA⊥AC,
∵PA⊥AB,∴PA⊥平面ABC,
∴PA⊥BC,∵E為PC中點(diǎn),且,∴BC⊥BP,∴BC⊥平面PAB,∴AB⊥BC;
(2)∵E,F為中點(diǎn),∴BC∥EF,且EF=1,由BC平面EFG,∴BC∥平面EFG,
∵M∈BC,∴VM﹣EFG=VB﹣EFG=VE﹣BFG,易知EF⊥平面BFG,FG∥PA,
, ,∴S△BFG,
∴.
∴三棱錐M﹣EFG的體積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+a(x2﹣1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a,x∈[1,+∞)時(shí),證明:f(x)≤(x﹣1)ex.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)和是函數(shù)的兩個(gè)極值點(diǎn),其中.
(1)求的取值范圍;
(2)若為自然對數(shù)的底數(shù)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
①當(dāng)時(shí),函數(shù)有______零點(diǎn);
②若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和 的直角坐標(biāo)方程;
(2)若,交于A,B兩點(diǎn),P點(diǎn)極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCD,EFAC,P是線段EF上的動點(diǎn)
(1)求證:平面BCE⊥平面ACEF;
(2)求平面PAB與平面BCE所成銳二面角的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動點(diǎn),若,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市推行“共享汽車”服務(wù),租用汽車按行駛里程加用車時(shí)間收費(fèi),標(biāo)準(zhǔn)是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時(shí)大約1小時(shí)”,并將自己近50天往返開車的花費(fèi)時(shí)間情況統(tǒng)計(jì)如下
時(shí)間(分鐘) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
次數(shù)ξ | 8 | 18 | 14 | 8 | 2 |
將老李統(tǒng)計(jì)的各時(shí)間段頻率視為相應(yīng)概率,假定往返的路況不變,而且每次路上開車花費(fèi)時(shí)間視為用車時(shí)間.
(1)試估計(jì)小劉每天平均支付的租車費(fèi)用(每個(gè)時(shí)間段以中點(diǎn)時(shí)間計(jì)算);
(2)小劉認(rèn)為只要上下班開車總用時(shí)不超過45分鐘,租用“共享汽車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有ξ天為“最優(yōu)選擇”,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中為實(shí)數(shù).
(1)若在上是單調(diào)減函數(shù),且在上有最小值,求的取值范圍;
(2)若在上是單調(diào)增函數(shù),試求的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com