【題目】設函數(shù)f(x)=2x+1的定義域為[1,5],則函數(shù)f(2x﹣3)的定義域為(
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]

【答案】D
【解析】解:∵函數(shù)f(x)的定義域為[1,5], ∴1≤2x﹣3≤5,解得2≤x≤4,
∴所求函數(shù)f(2x﹣3)的定義域是[2,4].
故選D.
【考點精析】解答此題的關鍵在于理解函數(shù)的定義域及其求法的相關知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)當時,求函數(shù)的單調區(qū)間;

(2)若對于任意的,都有成立,求的取值范圍;

(3)若方程上有且只有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f( x﹣1)=2x+3,且f(m﹣1)=6,則實數(shù)m等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地有 兩種“共享單車”(以下簡稱型車, 型車).某學習小組7名同學調查了該地區(qū)共享單車的使用情況.

(Ⅰ)某日該學習小組進行一次市場體驗,其中4人租到型車,3人租到型車.如果從組內隨機抽取2人,求抽取的2人中至少有一人在市場體驗過程中租到型車的概率;

(Ⅱ)根據(jù)已公布的2016年該地區(qū)全年市場調查報告,小組同學發(fā)現(xiàn)3月,4月的用戶租車情況城現(xiàn)如表使用規(guī)律.例如,第3個月租型車的用戶中,在第4個月有的用戶仍租型車.

第3個月

第4個月

租用型車

租用型車

租用型車

租用型車

若認為2017年該地區(qū)租用單車情況與2016年大致相同.已知2017年3月該地區(qū)租用, 兩種車型的用戶比例為1:1,根據(jù)表格提供的信息,估計2017年4月該地區(qū)租用兩種車型的用戶比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:在等式 中,把, , ,…, 叫做三項式的次系數(shù)列(如三項式的1次系數(shù)列是1,1,1).

(1)填空:三項式的2次系數(shù)列是_______________;

三項式的3次系數(shù)列是_______________;

(2)由楊輝三角數(shù)陣表可以得到二項式系數(shù)的性質,類似的請用三項式次系數(shù)列中的系數(shù)表示 (無須證明);

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列幾種說法: ①若logablog3a=1,則b=3;
②若a+a1=3,則a﹣a1=
③f(x)=log(x+ 為奇函數(shù);
④f(x)= 為定義域內的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log x,其中說法正確的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點且關于軸對稱的兩條直線分別交曲線、、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過適當圖象的變換得到函數(shù)的圖象, 寫出變換過程;

(3) 若,求的值.

查看答案和解析>>

同步練習冊答案