【題目】2019年10月1日,在慶祝新中國(guó)成立70周年閱兵中,由我國(guó)自主研制的軍用飛機(jī)和軍用無(wú)人機(jī)等參閱航空裝備分秒不差飛越天安門(mén),壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開(kāi)艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測(cè)站觀測(cè)到一架參閱直升飛機(jī)以千米/小時(shí)的速度在同一高度向正東飛行,如圖,第一次觀測(cè)到該飛機(jī)在北偏西的方向上,1分鐘后第二次觀測(cè)到該飛機(jī)在北偏東的方向上,仰角為,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號(hào))

【答案】

【解析】

根據(jù)飛行時(shí)間和速度可求飛行距離,結(jié)合兩次觀察的方位角及三角形知識(shí)可得.

如圖,

根據(jù)已知可得

設(shè)飛行高度為千米,即,則;

在直角三角形中,,所以;

在直角三角形中,同理可求

因?yàn)轱w行速度為千米/小時(shí),飛行時(shí)間是1分鐘,所以,

所以,解得,故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合,集合

1)用列舉法表示集合C;

2)設(shè)集合C的含n個(gè)元素所有子集為,記有限集合M的所有元素和為,求的值;

3)已知集合P、Q是集合C的兩個(gè)不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對(duì)的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 經(jīng)過(guò)橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線(xiàn),直線(xiàn)交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線(xiàn)與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.

(1)求橢圓的方程;

(2)直線(xiàn)過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義城為D,若滿(mǎn)足條件:存在,使上的值城為),則稱(chēng)k倍函數(shù),給出下列結(jié)論:①“1倍函數(shù);②“2倍函數(shù):③“3倍函數(shù).其中正確的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足.

1)證明:數(shù)列為等差數(shù)列;

2)設(shè)數(shù)列的前n項(xiàng)和為,若,且對(duì)任意的正整數(shù)n,都有,求整數(shù)的值;

3)設(shè)數(shù)列滿(mǎn)足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某山地車(chē)訓(xùn)練中心有一直角梯形森林區(qū)域,其四條邊均為道路,其中,,千米,千米,千米.現(xiàn)有甲、乙兩名特訓(xùn)隊(duì)員進(jìn)行野外對(duì)抗訓(xùn)練,要求同時(shí)從地出發(fā)勻速前往地,其中甲的行駛路線(xiàn)是,速度為千米/小時(shí),乙的行駛路線(xiàn)是,速度為千米/小時(shí).

1)若甲、乙兩名特訓(xùn)隊(duì)員到達(dá)地的時(shí)間相差不超過(guò)分鐘,求乙的速度的取值范圍;

2)已知甲、乙兩名特訓(xùn)隊(duì)員攜帶的無(wú)線(xiàn)通訊設(shè)備有效聯(lián)系的最大距離是千米.若乙先于甲到達(dá)地,且乙從地到地的整個(gè)過(guò)程中始終能用通訊設(shè)備對(duì)甲保持有效聯(lián)系,求乙的速度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和直線(xiàn),直線(xiàn)過(guò)直線(xiàn)上的動(dòng)點(diǎn)且與直線(xiàn)垂直,線(xiàn)段的垂直平分線(xiàn)與直線(xiàn)相交于點(diǎn)

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線(xiàn)與軌跡相交于另一點(diǎn),與直線(xiàn)相交于點(diǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知數(shù)列1,,,3,33,,,,,,即當(dāng))時(shí),,記).

1)求的值;

2)求當(dāng)),試用n、k的代數(shù)式表示);

3)對(duì)于,定義集合的整數(shù)倍,,且,求集合中元素的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案