【題目】中心在原點,對稱軸為坐標軸的雙曲線與圓:有公共點,且圓在點處的切線與雙曲線的一條漸近線平行,則該雙曲線的實軸長為________.
【答案】
【解析】
對雙曲線的焦點位置分兩種情況討論,先求出圓在點的切線為,再根據(jù)題得
到關(guān)于a,b的方程組,解方程組即得a 和雙曲線實軸的長.
當(dāng)雙曲線的焦點在x軸上時,設(shè)為,
圓有公共點,,圓在點的切線方程的斜率為:,
圓在點的切線為:,即,
圓在點的切線與雙曲線的漸近線平行,并且中心在原點,焦點在坐標軸上的雙曲線,
可得,所以a=2b, (1)
因為, (2)
解方程(1)(2)得無解.
當(dāng)雙曲線的焦點在y軸上時,設(shè)為,
圓有公共點,,圓在點的切線方程的斜率為:,
圓在點的切線為:,即,
圓在點的切線與雙曲線的漸近線平行,并且中心在原點,焦點在坐標軸上的雙曲線,
可得,所以b=2a, (3)
因為, (4)
解方程(3)(4)得,所以該雙曲線的實軸長為.
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(萬元) | ||||||
年銷售量(噸) |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關(guān)系式().對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為若想在年達到年利潤最大,請預(yù)測年的宣傳費用是多少萬元?
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,且離心率為,圓.
(1)求橢圓C的方程,
(2)點P在圓D上,F為橢圓右焦點,線段PF與橢圓C相交于Q,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學(xué)進行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)你能否估計哪個班級學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐代詩人李欣的是古從軍行開頭兩句說“百日登山望烽火,黃昏飲馬傍交河”詩中隱含著一個有缺的數(shù)學(xué)故事“將軍飲馬”的問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標系中,設(shè)軍營所在區(qū)域為,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學(xué)進行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”,如.現(xiàn)從不超過的素數(shù)中,隨機選取兩個不同的數(shù)(兩個數(shù)無序).(注:不超過的素數(shù)有,,,,,)
(1)列舉出滿足條件的所有基本事件;
(2)求“選取的兩個數(shù)之和等于”事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.
(Ⅰ)求橢圓的離心率及左焦點的坐標;
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對于命題:,,則為:,
其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com