如右圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月
球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛
行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ
繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ
繞月飛行,若用分別表示橢軌道Ⅰ和Ⅱ的焦距,用
分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
、 ③    ④.
其中正確式子的序號(hào)是 (    )
A.①③B.②③C.①④D.②④
D
分析:根據(jù)圖象可知a1>a2,c1>c2,進(jìn)而根據(jù)基本不等式的性質(zhì)可知a1+c1>a2+c2進(jìn)而判斷①④不正確.③正確;根據(jù)a1-c1=|PF|,a2-c2=|PF|可知a1-c1=a2-c2
解答:解:如圖可知a1>a2,c1>c2,
∴a1+c1>a2+c2;
∴①不正確,
∵a1-c1=|PF|,a2-c2=|PF|,
∴a1-c1=a2-c2;②正確.
a1+c2=a2+c1
可得(a1+c22=(a2+c12,
a12-c12+2a1c2=a22-c22+2a2c1,
即b12+2a1c2=b22+2a2c1,∵b1>b2
所以c1a2>a1c2
可得,③不正確.④正確;
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知,直線,為平面上的動(dòng)點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)的直線交軌跡點(diǎn),交直線于點(diǎn)
(1)已知,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(文)已知,點(diǎn)滿足,記點(diǎn)的軌跡為E,
(1)、求軌跡E的方程;(5分)
(2)、如果過點(diǎn)Q(0,m)且方向向量為="(1,1)" 的直線l與點(diǎn)P的軌跡交于A,B兩點(diǎn),當(dāng)時(shí),求AOB的面積。(9分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分) 設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),,與雙曲線交于不同兩點(diǎn),,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
(Ⅰ) 已知?jiǎng)狱c(diǎn)到點(diǎn)與到直線的距離相等,求點(diǎn)的軌跡的方程;
(Ⅱ) 若正方形的三個(gè)頂點(diǎn),()在(Ⅰ)中的曲線上,設(shè)的斜率為,求關(guān)于的函數(shù)解析式;
(Ⅲ) 求(2)中正方形面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-l,0)和B(1,0)的距離分別為d1d2,
APB=2θ,且存在常數(shù)λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線,并求出C的方程;
(2)過點(diǎn)B作直線交雙曲線C的右支于M、N
點(diǎn),試確定λ的范圍,使·=0,其中點(diǎn)
O為坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有下列命題:①雙曲線與橢圓有相同的焦點(diǎn);
 是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題是真命題.;
,
其中是真命題的有:_        ___.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系xoy中,已知△ABC的頂點(diǎn)A(-6,0)和C(6,0),頂點(diǎn)B在雙曲線的左支上,等于
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案