【題目】已知a>b>0,則3a , 3b , 4a的大小關系是(
A.3a>3b>4a
B.3b<4a<3a
C.3b<3a<4a
D.3a<4a<3b

【答案】C
【解析】解:∵a>b>0,不妨假設 a=2,b=1,則由3a=9,3b=3,4a=16,可得 3b<3a<4a , 故A、B、D 不正確,C正確,故選C.
【考點精析】關于本題考查的指數(shù)函數(shù)的單調(diào)性與特殊點,需要了解0<a<1時:在定義域上是單調(diào)減函數(shù);a>1時:在定義域上是單調(diào)增函數(shù)才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以A(5,5),B(1,4),C?(4,1)為頂點的三角形是
A.直角三角形 
B.等腰三角形 
C.正三角形 
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知(0.81.2m<(1.20.8m , 則實數(shù)m的取值范圍是(
A.(﹣∞,0)
B.(0,1)∪(1,+∞)
C.[0,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設隨機變量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>2)=0.3,則P(ξ<2μ+1)=(
A.0.4
B.0.5
C.0.6
D.0.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足“當f(k)≤k2成立時,總可推出f(k+1)≤(k+1)2”成立”.那么,下列命題總成立的是(
A.若f(2)≤4成立,則當k≥1時,均有f(k)≤k2成立
B.若f(4)≤16成立,則當k≤4時,均有f(k)≤k2成立
C.若f(6)>36成立,則當k≥7時,均有f(k)>k2成立
D.若f(7)=50成立,則當k≤7時,均有f(k)>k2成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合U=R,A={x|﹣1<x<10},B={x|x﹣4≥0},則A∩UB=(
A.{x|﹣1<x<4}
B.{x|﹣1<x≤4}
C.{x|4≤x<10}
D.{x|﹣1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合U={0,1,2,3,4,5},A={1,2},B={x∈Z|x2﹣5x+4<0},則U(A∪B)=(
A.{0,1,2,3}
B.{5}
C.{1,2,4}
D.{0,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“所有金屬都能導電,鐵是金屬,所以鐵能導電,”此推理類型屬于(
A.演繹推理
B.類比推理
C.合情推理
D.歸納推理

查看答案和解析>>

同步練習冊答案