已知數(shù)列中,
(1)求(2)試猜想的通項公式,并用數(shù)學歸納法證明你的猜想。

(1)(2)猜想,嚴格按數(shù)學歸納法的步驟進行即可

解析試題分析:(1)由,,   3分
(2)猜想        6分
證明:①當     7分
②假設     8分
則當       12分
時猜想也成立。     13分
因此,由①②知猜想成立。            14分
考點:本小題主要考查歸納猜想和數(shù)學歸納法的應用.
點評:應用數(shù)學歸納法時,要嚴格遵守數(shù)學歸納法的證題步驟,尤其是第二步一定要用上歸納假設,否則不是數(shù)學歸納法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設等比數(shù)列{}的前項和為,已知對任意的,點,均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列、滿足:.
(1)求
(2) 證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(3)設,求實數(shù)為何值時恒成立。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等比數(shù)列中,已知,公比,等差數(shù)列滿足.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)記,求數(shù)列的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公比大于1的等比數(shù)列{}滿足:++=28,且+2是的等差中項.(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)若=,求{}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差不為0的等差數(shù)列的首項為a,設數(shù)列的前n項和為,且,,成等比數(shù)列.
(1)求數(shù)列的通項公式及;
(2)記,,當時,計算,并比較的大小(比較大小只需寫出結果,不用證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是等比數(shù)列的前項和, 公比,已知1是的等 差中項,6是的等比中項,
(1)求此數(shù)列的通項公式 
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
等比數(shù)列的各項均為正數(shù),且
(1)求數(shù)列的通項公式.
(2)設 ,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)數(shù)列是遞增的等比數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)若,求證數(shù)列是等差數(shù)列;
(3)若……,求的最大值.

查看答案和解析>>

同步練習冊答案