【題目】(本小題滿分14分)

,的對(duì)邊分別為已知,成等比數(shù)列.求:

(1) 的值;

(2) 的值;

(3) 的值.

【答案】(1) (2) (3)

【解析】試題分析:首先已知條件要合理變形,左邊角有,因此右邊的角A要轉(zhuǎn)化為 ,利用和差角公式恒等變形得出,利用成等比,利用正弦定理“邊轉(zhuǎn)角”結(jié)合第一步結(jié)論,求出角,根據(jù)角的余弦求出,進(jìn)而得出.

試題解析:

(1) 因?yàn)?/span>ABCπ,所以Aπ(BC)

cos(BC)1cosA,cos(BC)1cos(BC)

展開(kāi),整理得sinB·sinC.

(2) 因?yàn)?/span>b,a,c成等比數(shù)列所以a2bc.

由正弦定理,sin2AsinBsinC,從而sin2A.

因?yàn)?/span>A(0π),所以sinA .

因?yàn)?/span>a邊不是最大邊所以A .

(3) 因?yàn)?/span>BCπA ,

所以cos(BC)cosBcosCsinBsinC ,

從而cosBcosC .

所以tanBtanC

=-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式x5f(x)>0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓M過(guò)坐標(biāo)原點(diǎn)O且圓心在曲線 上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB的面積為定值;
(2)設(shè)直線 與圓M 交于不同的兩點(diǎn)C,D,且|OC|=|OD|,求圓M的方程;
(3)設(shè)直線 與(Ⅱ)中所求圓M交于點(diǎn)E、F,P為直線x=5上的動(dòng)點(diǎn),直線PE,PF與圓M的另一個(gè)交點(diǎn)分別為G,H,求證:直線GH過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)已知直線l經(jīng)過(guò)點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)已知直線l經(jīng)過(guò)點(diǎn)P(3,4),且直線l的傾斜角為θ(θ≠90°),若直線l經(jīng)過(guò)另外一點(diǎn)(cosθ,sinθ),求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分16分)已知函數(shù)處的切線方程為

(1)若= ,求證:曲線上的任意一點(diǎn)處的切線與直線和直線

圍成的三角形面積為定值;

(2)若,是否存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意都成立;

(3)在(2)的條件下,若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.

(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對(duì)于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案