【題目】己知函數(shù)
(1)設時,判斷函數(shù)在上的零點的個數(shù);
(2)當,是否存在實數(shù),對且,有恒成立,若存在,求出的范圍:若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】給定無窮數(shù)列,若無窮數(shù)列滿足:對任意的,都有,則稱與“比較接近”.
(1)設是首項為1,公比為的等比數(shù)列,,判斷數(shù)列是否與“比較接近”;
(2)設數(shù)列的前四項為:,是一個與比較接近的數(shù)列,記集合,求中元素的個數(shù);
(3)已知是公差為的等差數(shù)列,若存在數(shù)列滿足:與較接近,且在中至少有1009個為正,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4alnx﹣3x,且不等式f(x+1)≥4ax﹣3ex,在(0,+∞)上恒成立,則實數(shù)a的取值范圍( )
A.B.C.(﹣∞,0)D.(﹣∞,0]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(0,+∞)上的可導函數(shù),滿足f(1)=2,且,則不等式f(x)﹣e3﹣3x>1的解集為( 。
A.(0,1)B.(0,e)C.(1,+∞)D.(e,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點,且AE︰EB=7︰2,點F、G分別為線段PA、PD的中點.
(1)求證:PE⊥平面ABCD;
(2)若平面EFG將四棱錐P-ABCD分成左右兩部分,求這兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個實數(shù)根(互不相同),則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 為整數(shù),且,,為正整數(shù),,,記.
(1)試用分別表示;
(2)用數(shù)學歸納法證明:對一切正整數(shù),均為整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把定義在上,且滿足(其中常數(shù),滿足,,)的函數(shù)叫做似周期函數(shù).
(1)若某個似周期函數(shù)滿足且圖像關于直線對稱,求證:函數(shù)是偶函數(shù);
(2)當,時,某個似周期函數(shù)在時的解析式為,求函數(shù),的解析式;
(3)對于確定的且當時,,試研究似周期函數(shù)在區(qū)間上是否可能是單調函數(shù)?若可能,求出的取值范圍;若不可能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問100名性別不同的大學生是否愛好某項運動,得到如下列聯(lián)表:
(1)能否有的把握認為是否愛好該項運動與性別有關?請說明理由.
(2)利用分層抽樣的方法從以上愛好該項運動的大學生中抽取6人組建“運動達人社”,現(xiàn)從“運動達人社”中選派2人參加某項校際挑戰(zhàn)賽,求選出的2人中恰有1名女大學生的概率.
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 15 | 25 | 40 |
總計 | 55 | 45 | 100 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com