【題目】設(shè)由正數(shù)組成的等比數(shù)列,公比q=2,且a1a2…a30=230 , 則a3a6a9…a30等于(
A.210
B.215
C.216
D.220

【答案】D
【解析】解:∵正數(shù)組成的等比數(shù)列,公比q=2,且a1a2…a30=230 ,
∴a130q1+2+3++29=a130q435=a1302435=230
∴a130=2405 , ∴a110=2135 ,
∴a3a6a9…a30=a110q2+5+8++29=a1102155
=21352155=220
故選:D
【考點(diǎn)精析】本題主要考查了等比數(shù)列的基本性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握{(diào)an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c滿足c<b<a,且ac<0,那么下列關(guān)系式中一定成立的是
①ab>ac
②c(b﹣a)<0
③cb2<ab2
④ac(a﹣c)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知sin(θ+π)<0,cos(θ﹣π)>0,則下列不等關(guān)系中必定成立的是(
A.sinθ<0,cosθ>0
B.sinθ>0,cosθ<0
C.sinθ>0,cosθ>0
D.sinθ<0,cosθ<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f ( x)=2ax﹣a+3,若x0∈(﹣1,1),f ( x0 )=0,則實(shí)數(shù) a 的取值范圍是(
A.(﹣∞,﹣3)∪(1,+∞)
B.(﹣∞,﹣3)
C.(﹣3,1)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={﹣1,1},B={m|m=x+y,x∈A,y∈A},則集合B等于(
A.{﹣2,2}
B.{﹣2,0,2}
C.{﹣2,0}
D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)非直角△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,則下列結(jié)論正確的是(寫出所有正確結(jié)論的編號(hào)).
①“sinA>sinB”是“a>b”的充分必要條件;
②“cosA<cosB”是“a>b”的充分必要條件;
③“tanA>tanB是“a>b”的充分必要條件;
④“sin2A>sin2B”是“a>b”的充分必要條件;
⑤“cos2A<cos2B”是“a>b”的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集R的函數(shù)f(x)滿足f(1)=4,且f(x)導(dǎo)函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為(
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.類比推理是由特殊到一般的推理
B.演繹推理是特殊到一般的推理
C.歸納推理是個(gè)別到一般的推理
D.合情推理可以作為證明的步驟

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法中,正確的是(
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B.命題“若α>β,則sinα>sinβ”的逆否命題為真命題
C.命題“x∈R,使得x2+x+1<0”的否定是“x∈R,都有x2+x+1>0”
D.“x>1”是“x2+x﹣2>0”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案