(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.
 
(Ⅰ)見解析(Ⅱ) (Ⅲ)

試題分析:(1)以正半軸方向,建立空間直角坐標系

       
二面角的正弦值為
(3)設;則,

解得     即
點評:利用空間向量求解立體幾何題目首要的選擇一個合適的建系位置
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面為梯形,,,,點在棱上,且

(1)求證:平面⊥平面;
(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間三條直線異面,且異面,則(  )
A.異面.B.相交.
C.平行.D.異面、相交、平行均有可能.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若兩條直線都與一個平面平行,則這兩條直線的位置關系是(  )
A.平行B.相交C.異面D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

有兩條不同的直線m,n與兩個不同的平面α,β,下列命題正確的是(  ).
A.m∥α,n∥β,且α∥β,則m∥n
B.m⊥α,n⊥β,且α⊥β,則m∥n
C.m∥α,n⊥β,且α⊥β,則m∥n
D.m⊥α,n∥β,且α∥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

( )已知兩個不同的平面、,能判定//的條件是
A.分別平行于直線B.分別垂直于直線
C.分別垂直于平面D.內有兩條直線分別平行于

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是不同的直線,是不同的平面,有以下四個命題:
 ②  ③  ④
其中正確的個數(shù)(     )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,
,,(Ⅰ)平面與平面是否垂直?并說明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

同步練習冊答案