【題目】下列說法:①對于獨(dú)立性檢驗(yàn),的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢,其中正確的個(gè)數(shù)是

A. B. C. D.

【答案】B

【解析】

分析:利用統(tǒng)計(jì)學(xué)的基本知識點(diǎn)逐一判斷。

詳解的觀測值,不是刻畫兩個(gè)分類變量之間的關(guān)系,故錯(cuò)誤。

,的值分別是和0.3,故正確

③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,高一學(xué)生的比重最大,則高一學(xué)生被抽到的概率最大,故正確。

④通過回歸直線及回歸系數(shù),只能大致的(不能精確)反映變量的取值和變化趨勢.故錯(cuò)誤。

故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),xR

1)判斷函數(shù)的奇偶性,并說明理由;

2)利用函數(shù)單調(diào)性定義證明:上是增函數(shù);

3)若對任意的xR,任意的 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,,直線為參數(shù),).

(Ⅰ)求直線的普通方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線的距離最短,并求出點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個(gè)元素的交和并也屬于T,

(1)當(dāng)T的元素個(gè)數(shù)為2時(shí),請寫出所有符合條件的T.

(2)當(dāng)T的元素個(gè)數(shù)為3時(shí),請寫出所有符合條件的T.

(3)求所有符合條件的T的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)有“和一點(diǎn)”.

(1)函數(shù)是否有“和一點(diǎn)”?請說明理由;

(2)若函數(shù)有“和一點(diǎn)”,求實(shí)數(shù)的取值范圍;

(3)求證:有“和一點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知 ,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.

1)求的值:

(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C為函數(shù)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t、t+2t+4,其中t1,

.

1)設(shè)△ABC的面積為S,求Sft);

2)判斷函數(shù)Sft)的單調(diào)性;

3)求Sft)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線為參數(shù)), 為參數(shù)).

(1)化,的方程為普通方程,并說明它們分別表示什么曲線;

(2)直線的極坐標(biāo)方程為,若上的點(diǎn)對應(yīng)的參數(shù)為上的動點(diǎn),求線段的中點(diǎn)到直線距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案