【題目】若在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)有“和一點(diǎn)”.

(1)函數(shù)是否有“和一點(diǎn)”?請(qǐng)說明理由;

(2)若函數(shù)有“和一點(diǎn)”,求實(shí)數(shù)的取值范圍;

(3)求證:有“和一點(diǎn)”.

【答案】1)不存在;(2a>﹣2;(3)見解析

【解析】

1)解方程即可判斷;

2)由題轉(zhuǎn)化為2x+1+a+2x+12x+a+2x+2+a+2有解,分離參數(shù)a2x2求值域即可求解;

3)由題意判斷方程cosx+1)=cosx+cos1是否有解即可.

1)若函數(shù)有“和一點(diǎn)”,則不合題意

故不存在

2)若函數(shù)fx)=2x+a+2x有“和一點(diǎn)”.

則方程fx+1)=fx+f1)有解,

2x+1+a+2x+12x+a+2x+2+a+2有解,

a2x2有解,

a>﹣2

3)證明:令fx+1)=fx+f1),

cosx+1)=cosx+cos1

cosxcos1sinxsin1cosxcos1,

即(cos11cosxsinxsin1cos1

故存在θ,

cosx+θ)=cos1

cosx+θ)=cos1,

cosx+θ,

cos21﹣(22cos1

cos21+2cos12

cos22cos220

01,

故方程cosx+1)=cosx+cos1有解,

fx)=cosx函數(shù)有“和一點(diǎn)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處的切線平行于軸,求的值和的極值;

(2)若過點(diǎn)可作曲線的三條切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中, 、分別是、上的點(diǎn), ,的中點(diǎn)現(xiàn)沿著翻折,使平面平面.

(Ⅰ)的中點(diǎn),求證:平面.

(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分

在極坐標(biāo)系中,圓C的極坐標(biāo)方程為,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.

(1)求圓C的一個(gè)參數(shù)方程;

(2)在平面直角坐標(biāo)系中,是圓C上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、(單位:萬件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營(yíng)銷趨勢(shì):(其中,為常數(shù),),已知萬件,萬件,萬件.

(1)求的值,并寫出滿足的關(guān)系式;

(2)證明:逐月遞增且控制在2萬件內(nèi);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校辦工廠請(qǐng)了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時(shí)數(shù)之比為10:7,問30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請(qǐng)利用二分法的知識(shí)解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.

(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;

(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案