【題目】如圖,直角三角形ABC的頂點(diǎn)坐標(biāo)A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),頂點(diǎn)C在x軸上,點(diǎn)P為線段OA的中點(diǎn),三角形ABC外接圓的圓心為M.

(1)求BC邊所在直線方程;
(2)求圓M的方程;
(3)直線l過點(diǎn)P且傾斜角為 ,求該直線被圓M截得的弦長.

【答案】
(1)解:∵kAB=﹣ ,AB⊥BC

∴kBC= ,

∴BC邊所在直線方程y= x﹣2


(2)解:在上式中,令y=0得:C(4,0)…5分

∴圓心M(1,0)

又∵AM=3

∴外接圓的方程為(x﹣1)2+y2=9


(3)解:∵P(﹣1,0),直線l過點(diǎn)P且傾斜角為 ,∴直線l的方程為y= (x+1)…10分

點(diǎn)M到直線l的距離為

直線l被圓M截得的弦長為2


【解析】(1)求出BC的斜率,可得BC邊所在直線方程;(2)求出圓心與半徑,即可求圓M的方程;(3)直線l過點(diǎn)P且傾斜角為 ,得出直線方程,即可求該直線被圓M截得的弦長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個點(diǎn)A(2,1)、B(3,2)、D(﹣1,4).
(1)求證: ;
(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對角線所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一商場在某日促銷活動中,對9時至14時的銷售額進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售為(
A.100萬元
B.10萬元
C.7.5萬元
D.6.25萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(x,y)在雙曲線 ﹣y2=1上,則3x2﹣2xy的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線處的切線方程;

2)若對任意, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題。規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.

(I)求甲能入選的概率.

(II)求乙得分的分布列和數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均數(shù),方差分別是(
A.3,
B.3,
C.4,
D.4,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標(biāo)準(zhǔn)輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差的大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前三項依次為a﹣2,a+2,a+8,則an=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案