設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)M>0使|f(x)|≤M|x|對一切實數(shù)x均成立,則稱函數(shù)f(x)為F函數(shù).現(xiàn)給出下列函數(shù)①f(x)=x2,②f(x)=
x2
x2-x+1
③f(x)=x(1-2x),④f(x)是定義在實數(shù)集R上的奇函數(shù),且對一切x1x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函數(shù)的序號為( 。
分析:本題考查閱讀題意的能力,根據(jù)F函數(shù)的定義對各選項進行判定.比較各個選項,發(fā)現(xiàn)只有選項(2)(4),根據(jù)單調(diào)性可求出存在正常數(shù)M滿足條件,而對于其它選項,不等式變形之后,發(fā)現(xiàn)都不存在正常數(shù)M使之滿足條件,由此即可得到正確答案.
解答:解:f(x)=x2,|f(x)|=|x2|≤M|x|,即|x|≤M,不存在這樣的M對一切實數(shù)x均成立,故①不是F函數(shù);
當x=0時,M可取任意正數(shù);當x≠0時,只須M≥|
x
x2-x+1
|的最大值,即M≥|
1
x+
1
x
-1
|的最大值,∴M≥1,
因此,當M≥1時,②是F函數(shù);
當x=0時,M可取任意正數(shù);當x≠0時,只須M≥|1-2x|的最大值,∵右邊不存在最大值,故③不是F函數(shù);
對于④,f(x)是定義在實數(shù)集R上的奇函數(shù),故|f(x)|是偶函數(shù),因而由|f(x1)-f(x2)|≤2|x1-x2|得到,|f(x)|≤2|x|成立,存在M≥2>0,使|f(x)|≤M|x|對一切實數(shù)x均成立,符合題意.
故選B.
點評:本題重點考查了函數(shù)的最值及其性質(zhì),對選支逐個加以分析變形,利用函數(shù)、不等式的進行檢驗,方可得出正確結(jié)論.深刻理解題中F函數(shù)的定義,用不等式的性質(zhì)加以處理,找出不等式恒成立的條件再進行判斷,是解決本題的關(guān)鍵所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊答案