【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,,.
(1)證明:平面;
(2)若四棱錐的體積為,求的面積.
【答案】(1)見解析;(2)
【解析】
(1)利用直線與平面平行的判定定理證明即可;
(2)取AD的中點M,連接PM,CM.證明CM⊥AD.再由已知證明PM⊥AD,PM⊥平面ABCD,可得PM⊥CM,設,則,,,,,取CD的中點N,連接PN,得PN⊥CD,且PN=,由四棱錐的體積為,求得x=2.進而得到的面積.
(1)在平面內(nèi),因為,所以.
又平面,平面,故平面.
(2)取的中點,連接,,由,及,,
得四邊形為正方形,則,因為側(cè)面是等邊三角形且垂直于底面,
平面平面,所以,因為平面,所以平面.
因為平面,所以.設,則,,,,.
因為四棱錐的體積為,所以,所以,
取的中點,連接,則,所以.
因此的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:上一點到焦點的距離為4,動直線交拋物線于坐標原點O和點A,交拋物線的準線于點B,若動點P滿足,動點P的軌跡C的方程為.
(1)求出拋物線的標準方程;
(2)求動點P的軌跡方程;
(3)以下給出曲線C的四個方面的性質(zhì),請你選擇其中的三個方面進行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.
(1)若為線段上的動點,證明:平面平面;
(2)若為線段,,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽《九章算術(shù)商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學家、天文歷算家,在他多達百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學者王子。他對文藝的最大貢獻是他創(chuàng)建了“十二平均律”,此理論被廣泛應用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設第二個音的頻率為,第八個音的頻率為,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到了如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計 | |
沒有私家車 | 15 | ||
有私家車 | 45 | ||
合計 | 100 |
已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.
(1)請將上面的列聯(lián)表補充完整;
(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認為“對限行的態(tài)度與是否擁有私家車有關”;
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
附:參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意正整數(shù),若存在數(shù)列,滿足,其中,則稱數(shù)列為正整數(shù)的生成數(shù)列,記為.
(1)寫出2018的生成數(shù)列;
(2)求證:對任意正整數(shù),存在唯一的生成數(shù)列;
(3)求生成數(shù)列的所有項的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個,一堆 3 個,要把積木一塊一塊的全部放到某個盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com