【題目】某鋼管生產(chǎn)車間生產(chǎn)一批鋼管,質(zhì)檢員從中抽出若干根對其直徑(單位: )進行測量,得出這批鋼管的直徑 服從正態(tài)分布.

(1)當質(zhì)檢員隨機抽檢時,測得一根鋼管的直徑為,他立即要求停止生產(chǎn),檢查設備,請你根據(jù)所學知識,判斷該質(zhì)檢員的決定是否有道理,并說明判斷的依據(jù);

(2)如果鋼管的直徑滿足為合格品(合格品的概率精確到0.01),現(xiàn)要從60根該種鋼管中任意挑選3根,求次品數(shù)的分布列和數(shù)學期望.

(參考數(shù)據(jù):若,則; .

【答案】(1)有道理;(2)分布列見解析, .

【解析】試題分析:(1)因為,.此事件為小概率事件,該質(zhì)檢員的決定有道理;(2)次品數(shù) 的可能取值為,根據(jù)根據(jù)排列組合知識,利用古典概型概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得的數(shù)學期望.

試題解析:(1) ,.

此事件為小概率事件,該質(zhì)檢員的決定有道理.

(2) ,

由題意可知鋼管直徑滿足: 為合格品,

故該批鋼管為合格品的概率約為0.95

60根鋼管中,合格品 57根,次品3根,任意挑選3根,則次品數(shù) 的可能取值為:0,1,2,3.

.

則次品數(shù)的分布列為:

0

1

2

3

得: .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的直角坐標方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求圓的極坐標方程和直線的直角坐標方程;

(2)在圓上找一點,使它到直線的距離最小,并求點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的可導函數(shù)f (x)的導函數(shù)為,滿足<f (x),且f (x+2)為偶函數(shù),f (4)=1,則不等式f (x)<ex的解集為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , 為自然對數(shù)的底數(shù).

(1)若函數(shù)在點處的切線為,求的值;

(2)當時,若在區(qū)間上有兩個零點,,試判斷 , 的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的圖像過點,且在點處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,證明: ;

(2)當時,函數(shù)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的最大值和最小值:

1

2;

3

4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著全民健康運動的普及,每天一萬步已經(jīng)成為一種健康時尚,某學校為了教職工能夠健康工作,在全校范圍內(nèi)倡導“每天一萬步”健康走活動,學校界定一人一天走路不足4千步為“健步常人”,不少于16千步為“健步超人”,其他人為“健步達人”,學校隨機抽取抽查人36名教職工,其每天的走步情況統(tǒng)計如下:

現(xiàn)對抽查的36人采用分層抽樣的方式選出6人,從選出的6人中隨機抽取2人進行調(diào)查.

(1)求這兩人健步走狀況一致的概率;

(2)求“健步超人”人數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列滿足,數(shù)列滿足.

(1)求數(shù)列, 的通項公式;

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

同步練習冊答案