【題目】已知直線截圓所得的弦長(zhǎng)為.直線的方程為.
(Ⅰ)求圓的方程;
(Ⅱ)若直線過(guò)定點(diǎn),點(diǎn)在圓上,且,求的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)根據(jù)題意,求出圓心到直線l的距離,由直線與圓的位置關(guān)系可得2×=,代入圓的方程,解可得r的值,即可得答案,
(Ⅱ)根據(jù)題意,將直線l1的方程變形可得(x-y)+m(2x+y-3)=0,進(jìn)而解可得P的坐標(biāo),設(shè)MN的中點(diǎn)為Q(x,y),分析可得OM2=OQ2+MQ2=OQ2+PQ2,即4=x2+y2+(x-1)2+(y-1)2,化簡(jiǎn)可得:(x-)2+(y-)2=,可得點(diǎn)Q的軌跡,據(jù)此結(jié)合直線與圓的位置關(guān)系分析可得答案.
(Ⅰ)根據(jù)題意,圓O:x2+y2=r2(r>0)的圓心為(0,0),半徑為r,
則圓心到直線l的距離d==,
若直線l:x+y-1=O截圓O:x2+y2=r2(r>0)所得的弦長(zhǎng)為,則有2×=,
解可得r=2,則圓的方程為x2+y2=4;
(Ⅱ)直線l1的方程為(1+2m)x+(m-1)y-3m=0,即(x-y)+m(2x+y-3)=0,
則有,解可得,即P的坐標(biāo)為(1,1),
設(shè)MN的中點(diǎn)為Q(x,y),則|MN|=2|PQ|,
則OM2=OQ2+MQ2=OQ2+PQ2,即4=x2+y2+(x-1)2+(y-1)2,
化簡(jiǎn)可得:(x-)2+(y-)2=,
則點(diǎn)Q的軌跡為以(,)為圓心,為半徑的圓,P到圓心的距離為,
則|PQ|的取值范圍為[,],
則|MN|的取值范圍為[-,+].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為.
(Ⅰ)若= n,請(qǐng)寫出數(shù)列的前5項(xiàng);
(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;
(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,點(diǎn)G、H分別為邊CD、DA的中點(diǎn),點(diǎn)M是線段BE上的動(dòng)點(diǎn).
(I)求證:GH⊥DM;
(II)當(dāng)三棱錐D-MGH的體積最大時(shí),求點(diǎn)A到面MGH的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:82,81,79,78,95,88,93,84;乙:92,95,80,75,83,80,90,85
(1) 用莖葉圖表示這兩組數(shù)據(jù),并計(jì)算平均數(shù)與方差;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中兩個(gè))考慮,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,
(1)求證:cos2+cos2=1;
(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求證:△ABC為鈍角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個(gè)零點(diǎn),求k的值及該函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)若不等式在上恒成立,求的取值范圍;
(3)若函數(shù)恰好有三個(gè)零點(diǎn),求的值及該函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的菱形中,.點(diǎn),分別在邊,上,點(diǎn)與點(diǎn),不重合,,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)當(dāng)與平面所成的角為時(shí),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)團(tuán)委組織了“紀(jì)念抗日戰(zhàn)爭(zhēng)勝利73周年”的知識(shí)競(jìng)賽,從參加競(jìng)賽的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段,,…,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:
(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次競(jìng)賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com