【題目】如圖,在三棱臺中,二面角是直二面角,,

(1)求證:平面;

(2)求二面角的平面角的余弦值.

【答案】(1)見解析;(2)

【解析】分析:(1)由勾股定理可得,由面面垂直的性質(zhì)可得平面,從而可得,結(jié)合,由線面垂直的判定定理可得平面;(2)在平面內(nèi),過點,由(1)可知,以為原點,,的方向為軸,軸,軸的正方向,建立空間直角坐標(biāo)系是平面的一個法向量,利用向量垂直數(shù)量積為零列方程求出平面的一個法向量,利用空間向量夾角余弦公式可得結(jié)果.

詳解(1)連接,在等腰梯形中,過于點,因為,所以,,所以,所以,即,又二面角是直二面角,平面,所以平面,

平面,所以,又因為、平面,所以平面

(2)如圖,在平面內(nèi),過點,由(1)可知,以為原點,,的方向為軸,軸,軸的正方向,建立空間直角坐標(biāo)系

,,,,

所以,設(shè)是平面的一個法向量,則,所以

,則,,

,

由(1)可知平面

所以是平面的一個法向量,

所以

又二面角的平面角為銳角,

所以二面角的平面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,點A為曲線上的動點,點B在線段OA的延長線上,且滿足,點B的軌跡為

(1)求的極坐標(biāo)方程;

(2)設(shè)點C的極坐標(biāo)為(2,0),求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)在區(qū)間上單調(diào)遞增,且滿,給出下列判斷:

;②上是減函數(shù);③的圖象關(guān)于直線對稱;

④函數(shù)處取得最大值;⑤函數(shù)沒有最小值

其中判斷正確的序號_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

2)若恰有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于不同的兩點,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.

(1)求f()的值;

(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;

(3)解不等式f(2x)>f(8x-6)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:

(I)根據(jù)散點圖判斷在推廣期內(nèi),(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次.

參考數(shù)據(jù):

4

62

1.54

2535

50.12

140

3.47

其中,

附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為:,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計,將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?

合計

110

50

合計

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案