【題目】在多面體中,四邊形是正方形,平面,的中點.

1)求證:;

2)求平面與平面所成角的正弦值.

【答案】(1)證明見解析(2)

【解析】

(1)首先證明,,,∴平面.即可得到平面.

(2)以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.

(1)∵平面平面,∴.

又∵四邊形是正方形,∴.

,∴平面.

平面,∴.

又∵,的中點,∴.

,∴平面.

平面,∴.

(2)∵平面,,∴平面.

為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.

如圖所示:

,,.

,.

設(shè)為平面的法向量,

,得

,則.

由題意知為平面的一個法向量,

∴平面與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若方程有三個解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且.

1)求函數(shù)的極值點;

2)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)直線l為函數(shù)的圖象上一點處的切線,證明:在區(qū)間上存在唯一的,使得直線l與曲線相切并求出此時n的值.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),過點軸的垂線交函數(shù)圖象于點,以為切點作函數(shù)圖象的切線交軸于點,再過軸的垂線交函數(shù)圖象于點,,以此類推得點,記的橫坐標(biāo)為

1)證明數(shù)列為等比數(shù)列并求出通項公式;

2)設(shè)直線與函數(shù)的圖象相交于點,記(其中為坐標(biāo)原點),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)().

1)若曲線處的切線也是曲線的切線,求的值;

2)記,設(shè)是函數(shù)的兩個極值點,且.

恒成立,求實數(shù)的取值范圍;

判斷函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程以及直線的直角坐標(biāo)方程;

2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進(jìn)行野外生存訓(xùn)練.如圖所示,在相距兩個位置分別為300,100名學(xué)生,在道路上設(shè)置集合地點,要求所有學(xué)生沿最短路徑到點集合,記所有學(xué)生進(jìn)行的總路程為.

(1)設(shè),寫出關(guān)于的函數(shù)表達(dá)式;

(2)當(dāng)最小時,集合地點離點多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:從數(shù)列{an}中抽取mmN,m≥3)項按其在{an}中的次序排列形成一個新數(shù)列{bn},則稱{bn}{an}的子數(shù)列;若{bn}成等差(或等比),則稱{bn}{an}的等差(或等比)子數(shù)列.

1)記數(shù)列{an}的前n項和為Sn,已知

①求數(shù)列{an}的通項公式;

②數(shù)列{an}是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請說明理由.

2)已知數(shù)列{an}的通項公式為ann+aaQ+),證明:{an}存在等比子數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案
鍏� 闂�