【題目】已知圓,點(diǎn)P是曲線上的動(dòng)點(diǎn),過點(diǎn)P分別向圓N引切線(為切點(diǎn))
(1)若,求切線的方程;
(2)若切線分別交y軸于點(diǎn),點(diǎn)P的橫坐標(biāo)大于2,求的面積S的最小值.
【答案】(1)或;(2)
【解析】
(1)分成切線的斜率不存在和存在兩種情況,結(jié)合點(diǎn)到直線的距離公式,求得切線的方程.
(2)設(shè)出點(diǎn)的坐標(biāo),求得切線的方程,利用圓心到切線的距離等于半徑列式.求得面積的表達(dá)式,利用基本不等式求得面積的最小值.
(1)依題意,圓的圓心為,半徑為.因?yàn)?/span>,所以當(dāng)過點(diǎn)的直線斜率不存在時(shí),直線與圓相切,符合題意.當(dāng)點(diǎn)的直線斜率存在時(shí),設(shè)切線的斜率為,則切線方程為,即.圓心到切線的距離,解得,此時(shí)切線方程為.
綜上所述,切線方程為或.
(2)設(shè),則,設(shè),則,所以直線的方程為,即,因?yàn)橹本與圓相切,所以,即.
同理,由直線與圓相切,得.
所以是方程的兩根,其判別式,,則.
所以
,當(dāng)且僅當(dāng)時(shí),等號成立,所以的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距與橢圓的短軸長相等,且與的長軸長相等.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左、右焦點(diǎn),不經(jīng)過的直線與橢圓交于兩個(gè)不同的點(diǎn),如果直線的斜率依次成等差數(shù)列,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖,根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.各年的月接待游客量高峰期大致在7,8月份
B.年接待游客量逐年增加
C.月接待游客量逐月增加
D.各年1月至6月的月接待游客量相對7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點(diǎn),且.若直線上存在點(diǎn)P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)判斷函數(shù):在的單調(diào)性;
(2)對于區(qū)間上的任意不相等實(shí)數(shù)、,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
求的解析式;
設(shè),若存在實(shí)數(shù)a、b使得,求a的取值范圍;
若對任意,都有恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)過后,甲、乙、丙三人談?wù)摰接嘘P(guān)部電影,,的情況.
甲說:我沒有看過電影,但是有部電影我們?nèi)齻(gè)都看過;
乙說:三部電影中有部電影我們?nèi)酥兄挥幸蝗丝催^;
丙說:我和甲看的電影有部相同,有部不同.
假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是( )
A.部B.部C.部D.部或部
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com