【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3
B.
C.2
D.
【答案】C
【解析】解:由題意,F(xiàn)1(0,﹣c),F(xiàn)2(0,c), 一條漸近線方程為y= x,則F2到漸近線的距離為 =b.
設(shè)F2關(guān)于漸近線的對(duì)稱點(diǎn)為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點(diǎn),
又0是F1F2的中點(diǎn),∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2 ,
∴c=2a,∴e=2.
故選C.
首先求出F2到漸近線的距離,利用F2關(guān)于漸近線的對(duì)稱點(diǎn)恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2 , 運(yùn)用勾股定理,即可求出雙曲線的離心率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為2的正三角形沿軸滾動(dòng),記滾動(dòng)過程中頂點(diǎn)的橫、縱坐標(biāo)分別為和,設(shè)是的函數(shù),記,則下列說法中:
①函數(shù)的圖像關(guān)于軸對(duì)稱;
②函數(shù)的值域是;
③函數(shù)在上是增函數(shù);
④函數(shù)與在上有個(gè)交點(diǎn).
其中正確說法的序號(hào)是_______.
說明:“正三角形沿軸滾動(dòng)”包括沿軸正方向和沿軸負(fù)方向滾動(dòng).沿軸正方向滾動(dòng)指的是先以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)C落在軸上時(shí),再以頂點(diǎn)C為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形可以沿軸負(fù)方向滾動(dòng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C:y2=2px的焦點(diǎn)為F,拋物線上一定點(diǎn)Q(1,2).
(1)求拋物線C的方程及準(zhǔn)線l的方程;
(2)過焦點(diǎn)F的直線(不經(jīng)過Q點(diǎn))與拋物線交于A,B兩點(diǎn),與準(zhǔn)線l交于點(diǎn)M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)“有無數(shù)個(gè)”;
②函數(shù) 可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時(shí)是無數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱圖形.
其中正確的命題是( )
A.①③
B.①③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com