【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
【答案】(1)證明見解析;
(2) .
【解析】
(1)利用題意,證得二面角為,即可得到平面ACD⊥平面ABC;
(2)建立適當(dāng)?shù)目臻g直角坐標系,求得兩個半平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值。
(1)由題意可得,,從而,
又是直角三角形,所以,
取AC的中點O,連接DO,BO,則,
又由是正三角形,所以,
所以是二面角的平面角,
在直角中,,
又,所以,故 ,
所以平面平面。
(2)由題設(shè)及(1)可知,,兩兩垂直,以為坐標原點,建立如圖所示的空間直角坐標系,
則
由題設(shè)知,四面體的體積為四面體的體積的,從而到平面的距離為到平面的距離的,即為的中點,得 .
故,
設(shè)是平面的法向量,則,即,
令,則,即平面的一個法向量,
設(shè)是平面的法向量,則,
可得平面的一個法向量,
則,即二面角的余弦值為。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為,直線過點,是橢圓上關(guān)于對稱的兩點.
(1)求橢圓的標準方程;
(2)求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某小區(qū)居民的“幸福度”,F(xiàn)從所有居民中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉),若幸福度分數(shù)不低于8.5分,則稱該人的幸福度為“幸!薄
(1)求從這16人中隨機選取3人,至少有2人為“幸福”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計整個小區(qū)的總體數(shù)據(jù),若從該小區(qū)(人數(shù)很多)任選3人,記表示抽到“幸!钡娜藬(shù),求的分布列及數(shù)學(xué)期望和方差。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時,x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時,健康工作五十年,幸福生活一輩子.”一科研單位為了解員工愛好運動是否與性別有關(guān),從單位隨機抽取30名員工進行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計 | |
愛好 | 10 | ||
不愛好 | 8 | ||
合計 | 30 |
已知在這30人中隨機抽取1人抽到愛好運動的員工的概率是.
(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析能否有把握認為愛好運動與性別有關(guān)?
(2)若從這30人中的女性員工中隨機抽取2人參加一活動,記愛好運動的人數(shù)為,求的分布列、數(shù)學(xué)期望.參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024/span> | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是函數(shù)定義域的一個子集,若存在,使得成立,則稱是的一個“準不動點”,也稱在區(qū)間上存在準不動點,已知,.
(1)若,求函數(shù)的準不動點;
(2)若函數(shù)在區(qū)間上存在準不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若函數(shù)有三個不同的零點,,(其中),則的取值范圍為__________.
【答案】
【解析】如圖:
,,作出函數(shù)圖象如圖所示
,,作出函數(shù)圖象如圖所示
,由有三個不同的零點
,如圖
令
得
為滿足有三個零點,如圖可得
,
點睛:本題考查了函數(shù)零點問題,先由導(dǎo)數(shù)求出兩個函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點個數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點問題等較為綜合,有很大難度。
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列的前項和為,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了估計某校某次數(shù)學(xué)考試的情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機抽出60名學(xué)生,其數(shù)學(xué)成績(百分制)均在內(nèi),將這些成績分成六組…,得到如圖所示的部分頻率分布直方圖.
(1)求抽出的60名學(xué)生中數(shù)學(xué)成績在內(nèi)的人數(shù);
(2)若規(guī)定成績不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計該校參加考試的學(xué)生數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù);
(3)試估計抽出的60名學(xué)生的數(shù)學(xué)成績的中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com