設(shè)函數(shù)f(x)=loga(1-x),g(x)=loga(1+x)(a>0且a≠1).

(1)設(shè)F(x)=f(x)-g(x),判斷F(x)的奇偶性并證明;

(2)若關(guān)于x的方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的范圍;

(3)若a>1且在x∈[0,1]時(shí),恒成立,求實(shí)數(shù)m的范圍.

答案:
解析:

  (1)

  其中 ∴

  

  ∴為奇函數(shù).

  (2)

  原方程有兩個(gè)不等實(shí)根即有兩個(gè)不等實(shí)根.

  其中 ∴

  即上有兩個(gè)不等實(shí)根.

  記,對(duì)稱(chēng)軸x=1,由解得

  (3)

  即時(shí)恒成立

  ∴恒成立,

  由①得

  令 ∴由②得時(shí)恒成立

  記 即

  綜上


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:陜西省漢中地區(qū)2007-2008學(xué)年度高三數(shù)學(xué)第一學(xué)期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域?yàn)镸,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開(kāi)區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:蘇教版江蘇省揚(yáng)州市2007-2008學(xué)年度五校聯(lián)考高三數(shù)學(xué)試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當(dāng)m≥-2時(shí),求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省莒南一中2008-2009學(xué)年度高三第一學(xué)期學(xué)業(yè)水平階段性測(cè)評(píng)數(shù)學(xué)文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對(duì)于[3,4]上的每一個(gè)x的值,不等式f(x)>()x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案