已知函數(shù)
(I)若的極值點,求的極值;
(Ⅱ)若函數(shù)上的單調(diào)遞增函數(shù),求實數(shù)的取值范圍.

解:(Ⅰ) ,  2分
,令解得
根據(jù)列表,得到函數(shù)的極值和單調(diào)性
x



3


+
0
-
0
+


極大值

極小值

的極大值為 ,的極小值為             6分
(Ⅱ) 是R上的單調(diào)遞增函數(shù)轉(zhuǎn)化為在R上恒成立
從而有,  10分 解得a[-3,3]
本試題主要考查了導數(shù)在研究函數(shù)中的運用,求解函數(shù)的機制和函數(shù)單調(diào)性的逆用問題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三次函數(shù)f(x)=x3-(4m-1)x2+(15m2-2m-7)x+2在x∈(-∞,+∞)是增函數(shù),則m的取值范圍是(  )
A.m<2或m>4B.-4<m<-2C.D.以上皆不正確

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)上既有極大值又有極小值,則的取值范圍為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的導函數(shù),的圖象如右圖所示,則的圖象只可能是(  )

(A)          (B)          (C)         (D)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f (x)=f (p-x),且當時,f (x)=x+sinx,設a=f (1),b=f (2),c=f (3),則(  )
A.a<b<cB.b<c<aC.c<b<a D.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù) 
(1)當時,求函數(shù)的最大值;
(2)令,()其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)若上存在單調(diào)遞增區(qū)間,求的取值范圍;
(Ⅱ)當時,的最小值為,求在該區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知的圖像在點處的切線與直線平行.
(1)求a,b滿足的關系式;
(2)若上恒成立,求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間上的最大值和最小值分別為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案