【題目】如圖,給定兩個(gè)平面單位向量 ,它們的夾角為120°,點(diǎn)C在以O(shè)為圓心的圓弧AB上,且 (其中x,y∈R),則滿足x+y≥ 的概率為(
A.
B.
C.
D.

【答案】B
【解析】解:建立如圖所示的坐標(biāo)系,

則A(1,0),B(cos120°,sin120°),

即B(﹣

設(shè)∠AOC=α,則 =(cosα,sinα)

=(x,0)+(﹣ , )=(cosα,sinα).

∴x+y= sinα+cosα=2sin(α+30°).

∵0°≤α≤120°.

∴30°≤α+30°≤150°.

當(dāng)x+y≥ 時(shí),可得sin(α+30°)

∴45°≤α+30°≤135°即15°≤α≤105°,

∴滿足x+y≥ 的概率P= =

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若(x+ n的展開式中各項(xiàng)的系數(shù)之和為81,且常數(shù)項(xiàng)為a,則直線y= x與曲線y=x2所圍成的封閉區(qū)域面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知﹣ <x<0,則sinx+cosx=
(I)求sinx﹣cosx的值;
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 在區(qū)間[﹣k,k](k>0)上的值域?yàn)閇m,n],則m+n等于(
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)f(x)=x2﹣x+1,實(shí)數(shù)a滿足|x﹣a|<1,求證:|f(x)﹣f(a)|<2(|a+1|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三第一學(xué)期期末四校聯(lián)考數(shù)學(xué)第I卷中共有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的;評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分.”某考生每道題都給出一個(gè)答案,已確定有5道題的答案是正確的,而其余選擇題中,有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜,試求出該考生:
(1)得40分的概率;
(2)得多少分的可能性最大?
(3)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列(公比q>1),bn=log2an , b1+b2+b3=3,b1b2b3=﹣3,則an=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知min{{a,b}= f(x)=min{|x|,|x+t|},函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱;若“x∈[1,+∞),ex>2mex”是真命題(這里e是自然對(duì)數(shù)的底數(shù)),則當(dāng)實(shí)數(shù)m>0時(shí),函數(shù)g(x)=f(x)﹣m零點(diǎn)的個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象上存在不同的兩點(diǎn) ,使得曲線 在這兩點(diǎn)處的切線重合,則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案