【題目】已知函數(shù),,.
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請(qǐng)說明理由.
【答案】(1) 取得極大值,無極小值;(2) ;(3)詳見解析.
【解析】
試題分析:(1)當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的零點(diǎn),并判斷零點(diǎn)兩側(cè)的單調(diào)性,求得極值;(2)根據(jù)條件將問題轉(zhuǎn)化為,當(dāng)時(shí)恒成立,采用參變分離的方法,得到;(3)設(shè)點(diǎn)A,B的坐標(biāo),表示兩點(diǎn)連線的斜率,以及中點(diǎn)處的導(dǎo)數(shù),得到,可將此式變形為關(guān)于的函數(shù),轉(zhuǎn)化為判定函數(shù)是否有零點(diǎn)的問題.
試題解析:解:(1)的定義域?yàn)?/span>,,
故單調(diào)遞增;單調(diào)遞減,
時(shí),取得極大值,無極小值.
(2),,
若函數(shù)在上單調(diào)遞減,則對(duì)恒成立
∴,只需
∵時(shí),,則,,
故,的取值范圍為.
(3)假設(shè)存在,不妨設(shè),
由得,整理得
令,,
在上單調(diào)遞增,
,故, 不存在符合題意的兩點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)把的圖象向右平移個(gè)單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為.過右焦點(diǎn)與軸不垂直的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)在線段上是否存在點(diǎn),使得?若存在,求出的取值范圍;若不存在,請(qǐng)
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;
(3)關(guān)于的方程在上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校90名專職教師的年齡狀況如下表:
年齡 | 35歲以下 | 35~50歲 | 50歲以上 |
人數(shù) | 45 | 30 | 15 |
現(xiàn)擬采用分層抽樣的方法從這90名專職教師中抽取6名老、中、青教師下鄉(xiāng)支教一年.
(Ⅰ)求從表中三個(gè)年齡段中分別抽取的人數(shù);
(Ⅱ)若從抽取的6個(gè)教師中再隨機(jī)抽取2名到相對(duì)更加邊遠(yuǎn)的鄉(xiāng)村支教,計(jì)算這兩名教師至少有一個(gè)年齡是35~50歲教師的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,).
(1)若的部分圖像如圖所示,求的解析式;
(2)在(1)的條件下,求最小正實(shí)數(shù),使得函數(shù)的圖象向左平移個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù);
(3)若在上是單調(diào)遞增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對(duì)任意,都有,且;又?jǐn)?shù)列滿足.
(1)求證: 是數(shù)列的母函數(shù);
(2)求數(shù)列的前項(xiàng)和.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com