【題目】已知函數(shù),.

1,求函數(shù)的極值;

2若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

3在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請(qǐng)說明理由.

【答案】1 取得極大值,無極小值;2 ;3詳見解析.

【解析】

試題分析:1當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的零點(diǎn),并判斷零點(diǎn)兩側(cè)的單調(diào)性求得極值;2根據(jù)條件將問題轉(zhuǎn)化為,當(dāng)時(shí)恒成立,采用參變分離的方法,得到3設(shè)點(diǎn)A,B的坐標(biāo),表示兩點(diǎn)連線的斜率,以及中點(diǎn)處的導(dǎo)數(shù),得到,可將此式變形為關(guān)于的函數(shù)轉(zhuǎn)化為判定函數(shù)是否有零點(diǎn)的問題.

試題解析:解:1的定義域?yàn)?/span>,,

單調(diào)遞增;單調(diào)遞減,

時(shí),取得極大值,無極小值.

2,

若函數(shù)上單調(diào)遞減,則對(duì)恒成立

,只需

時(shí),,則,

,的取值范圍為.

3假設(shè)存在,不妨設(shè),

,整理得

,,

上單調(diào)遞增,

,故, 不存在符合題意的兩點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象向右平移個(gè)單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為過右焦點(diǎn)軸不垂直的直線交橢圓于,兩點(diǎn)

1求橢圓的方程;

2在線段上是否存在點(diǎn),使得?若存在,求出的取值范圍;若不存在請(qǐng)

說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;

(3)關(guān)于的方程上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校90名專職教師的年齡狀況如下表:

年齡

35歲以下

35~50歲

50歲以上

人數(shù)

45

30

15

現(xiàn)擬采用分層抽樣的方法從這90名專職教師中抽取6名老、中、青教師下鄉(xiāng)支教一年.

(Ⅰ)求從表中三個(gè)年齡段中分別抽取的人數(shù);

(Ⅱ)若從抽取的6個(gè)教師中再隨機(jī)抽取2名到相對(duì)更加邊遠(yuǎn)的鄉(xiāng)村支教,計(jì)算這兩名教師至少有一個(gè)年齡是35~50歲教師的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),).

(1)若的部分圖像如圖所示,的解析式

(2)在(1)的條件下,求最小正實(shí)數(shù)使得函數(shù)的圖象向左平移個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù);

(3)若上是單調(diào)遞增函數(shù),的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;

(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).

(Ⅰ)定義在上的函數(shù)滿足:對(duì)任意,都有,且;又?jǐn)?shù)列滿足.

(1)求證: 是數(shù)列的母函數(shù);

(2)求數(shù)列的前項(xiàng).

(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案