【題目】已知數(shù)列{an}滿足對任意的n∈N* , 都有a13+a23++an3=(a1+a2++an)2且an>0.
(1)求a1 , a2的值;
(2)求數(shù)列{an}的通項公式;
(3)若bn= ,記Sn= ,如果Sn< 對任意的n∈N*恒成立,求正整數(shù)m的最小值.
【答案】
(1)解:當(dāng)n=1時,有a13=a12,
由于an>0,所以a1=1.
當(dāng)n=2時,有a13+a23=(a1+a2)2,
將a1=1代入上式,可得a22﹣a2﹣2=0,
由于an>0,所以a2=2.
(2)解:由于a13+a23++an3=(a1+a2++an)2,①
則有a13+a23++an3+an+13=(a1+a2++an+an+1)2.②
②﹣①,得an+13=(a1+a2++an+an+1)2﹣(a1+a2++an)2,
由于an>0,所以an+12=2(a1+a2++an)+an+1.③
同樣有an2=2(a1+a2++an﹣1)+an(n≥2),④
③﹣④,得an+12﹣an2=an+1+an.
所以an+1﹣an=1.
由于a2﹣a1=1,即當(dāng)n≥1時都有an+1﹣an=1,
所以數(shù)列{an}是首項為1,公差為1的等差數(shù)列.
故an=n.
(3)解:bn= = =2[ ﹣ ],
則Sn=2[ ﹣ + ﹣ + ﹣ + ﹣ ++ ﹣ + ﹣ ]
=2[ + ﹣ ﹣ ]<2× = ,
Sn< 對任意的n∈N*恒成立,可得 ≥ ,
即有m≥ ,
可得正整數(shù)m的最小值為4.
【解析】(1)由題設(shè)條件知a1=1.當(dāng)n=2時,有a13+a23=(a1+a2)2,由此可知a2=2.(2)由題意知,an+13=(a1+a2++an+an+1)2﹣(a1+a2++an)2,由于an>0,所以an+12=2(a1+a2++an)+an+1.同樣有an2=2(a1+a2++an﹣1)+an(n≥2),由此得an+12﹣an2=an+1+an.所以an+1﹣an=1.所以數(shù)列{an}是首項為1,公差為1的等差數(shù)列,由通項公式即可得到所求.(3)求得bn= = =2[ ﹣ ],運用數(shù)列的求和方法:裂項相消求和,可得Sn,結(jié)合不等式的性質(zhì),恒成立思想可得m≥ ,進而得到所求最小值.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集為(﹣1,3),求a,b的值;
(2)當(dāng)a=1時,若對任意x∈R,f(x)≥0恒成立,求實數(shù)b的取值范圍;
(3)當(dāng)b=a時,解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求點D到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項為正的等比數(shù)列{an}的前n項和為Sn , S4=30,過點P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項和為Tn , 證明:對于任意n∈N* , 都有Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以下關(guān)于向量的命題中,不正確的是( )
A.若向量 ,向量 (xy≠0),則
B.若四邊形ABCD為菱形,則
C.點G是△ABC的重心,則
D.△ABC中, 和 的夾角等于A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知圓C的方程:x2+y2﹣2x﹣4y+4=0,點P是直線l:x﹣2y﹣2=0上的任意點,過P作圓的兩條切線PA,PB,切點為A、B,當(dāng)∠APB取最大值時.
(Ⅰ)求點P的坐標(biāo)及過點P的切線方程;
(Ⅱ)在△APB的外接圓上是否存在這樣的點Q,使|OQ|= (O為坐標(biāo)原點),如果存在,求出Q點的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足: ①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式|x﹣2|<a(a∈N*)的解集為A,且
(Ⅰ)求a的值
(Ⅱ)求函數(shù)f(x)=|x+a|+|x﹣2|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com