已知動圓過定點(1,0),且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)設是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,①當時,求證直線恒過一定點;
②若為定值,直線是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.

(1);(2)①參考解析,②

解析試題分析:(1)根據(jù)題意可假設拋物線方程為,由拋物線的定義可求得的值,從而可求得拋物線的方程.
(2)根據(jù)題意假設直線AB的方程,聯(lián)立拋物線的方程,消去y得到一個關于x的一元二次方程,由韋達定理得到A,B兩點坐標的等式.①由直線的垂直可得到A,B坐標的一個等式,從而可化簡直線AB的方程即可得到結論.②當為一個一般的定值時,需要分類討論,解決問題的方法類似于①小題,同樣是通過A,B的斜率關系得到一個等式,從而得到結論.
試題解析:(1)設動圓圓心M(x,y),
依題意點M的軌跡是以(1,0)為焦點,直線x=-1為準線的拋物線其方程為.
(2)設A(x1,y1),B(x2,y2).由題意得x1≠x2(否則)且x1x2≠0,則
所以直線AB的斜率存在,設直線AB的方程為y=kx+b,
則將y=kx+b與y2=4x聯(lián)立消去x,得ky2-4y+4b=0
由韋達定理得-------※
①當=時,所以,所以y1y2=16,又由※知:y1y2=所以b=4k;因此直線AB的方程可表示為y=kx+4k,所以直線AB恒過定點(-4,0).
②當為定值時.若=,由①知,
直線AB恒過定點M(-4,0)當時,由,得==
將※式代入上式整理化簡可得:,所以,此時,直線AB的方程可表示為y=kx+,所以直線AB恒過定點所以當時,直線AB恒過定點(-4,0).,
時直線AB恒過定點
考點:1.拋物線的定義.2.直線與拋物線的位置關系.3.過定點的問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程.
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
(3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的中心在坐標原點,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),平行于OM的直線ly軸上的截距為m,直線l與橢圓相交于A,B兩個不同點.

(1)求實數(shù)m的取值范圍;
(2)證明:直線MA,MBx軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A,B,定點M的坐標為(0,-1),直線MA,MB分別與C1相交于點D,E.

(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率
(3)點為橢圓上的任一點,若直線分別與軸交于點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓與雙曲線x2-y2=0有相同的焦點,且離心率為.
(1)求橢圓的標準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標原點,若=2,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A,B,C是橢圓Wy2=1上的三個點,O是坐標原點.
(1)當點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習冊答案