【題目】隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國民在旅游休閑方面的投入不斷增多,民眾對(duì)旅游的需求也不斷提高,安慶某社區(qū)居委會(huì)統(tǒng)計(jì)了2011至2015年每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)資料如表:

年份(x)

2011

2012

2013

2014

2015

家庭數(shù)(y)

6

10

16

22

26


(1)從這5年中隨機(jī)抽取兩年,求外出旅游的家庭至少有1年多于20個(gè)的概率;
(2)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程 ,并判斷它們之間是正相關(guān)還是負(fù)相關(guān);
(3)利用(2)中所求出的回歸直線方程估計(jì)該社區(qū)2016年在春節(jié)期間外出旅游的家庭數(shù).
參考公式: ,

【答案】
(1)解:從這5年中任意抽取2年,所有的事件有:

(2011,2012),(2011,2013),(2011,2014),(2011,2015),

(2012,2013),(2012,2014).(2012,2015),

(2013,2014),(2013,2015),(2014,2015)共10種,

外出旅游的家庭數(shù)至少有1年多于20個(gè)的事件有

(2011,2014),(2011,2015),(2012,2014),(2012,2015),

(2013,2014),(2013,2015),(2014,2015)共7種;

故概率為P=0.7;


(2)解:由已知數(shù)據(jù)計(jì)算得 =2013, =16,

=(﹣2)(﹣10)+(﹣1)(﹣6)+1×6+2×10=52,

=(﹣2)2+(﹣1)2+12+22=10,

所以 = = =5.2,

=16﹣5.2×2013=﹣10451.6,

所以回歸直線方程為y=5.2x﹣10451.6,

因?yàn)? =5.2>0,所以外出旅游的家庭數(shù)與年份之間是正相關(guān);


(3)解:2016年該社區(qū)在春節(jié)期間外出旅游的家庭數(shù)的估計(jì)值為

y=5.2×2016﹣10451.6≈32,

答:估計(jì)該社區(qū)2016年在春節(jié)期間外出旅游的家庭數(shù)為32


【解析】(1)利用列舉法求出基本事件數(shù),再計(jì)算對(duì)應(yīng)的概率值;(2)由題目中的公式計(jì)算 、 ,求出回歸系數(shù) 、 ,寫出回歸直線方程,由此判斷是正相關(guān)還是負(fù)相關(guān);(3)由回歸方程計(jì)算x=2016時(shí)y的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·重慶高二檢測)如圖三棱柱ABC-A1B1C1,側(cè)棱垂直底面,ACB=90°,AC=BC=AA1D是棱AA1的中點(diǎn).

(1)證明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球,兩個(gè)“”號(hào)球,三個(gè)“”號(hào)球、四個(gè)無號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球,五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,每位顧客消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,摸得無號(hào)球則沒有獎(jiǎng)金。

(1)經(jīng)統(tǒng)計(jì),顧客消費(fèi)額服從正態(tài)分布,某天有位顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù).(結(jié)果四舍五入取整數(shù))

附:若,則,.

(2)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列.

(3)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,

方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);

方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì).

請(qǐng)問:這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】渦陽縣某華為手機(jī)專賣店對(duì)市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:

分組(歲)

頻數(shù)

合計(jì)

1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;

2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:

推銷員編號(hào)

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬元

2

3

3

4

5

(1)求年推銷金額關(guān)于工作年限的線性回歸方程;

(2)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

附:線性回歸方程中,,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市舉行中學(xué)生詩詞大賽,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的a∈(1, ),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a﹣a2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線x軸交于不同的兩點(diǎn)A,B,曲線Γy軸交于點(diǎn)C

1)是否存在以AB為直徑的圓過點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由;

2)求證:A,B,C三點(diǎn)的圓過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長,且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為
(2)若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號(hào))
x∈(﹣∞,1),f(x)>0;
x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC為鈍角三角形,則x∈(1,2),使f(x)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案